bims-aditis Biomed News
on Adipose tissue, inflammation, immunometabolism
Issue of 2021–12–12
four papers selected by
Matthew C. Sinton, University of Glasgow



  1. J Physiol Sci. 2021 Dec 04. 71(1): 38
      "Inflammaging" refers to the chronic, low-grade inflammation that characterizes aging. Aging, like obesity, is associated with visceral adiposity and insulin resistance. Adipose tissue macrophages (ATMs) have played a major role in obesity-associated inflammation and insulin resistance. Macrophages are elevated in adipose tissue in aging. However, the changes and also possibly functions of ATMs in aging and aging-related diseases are unclear. In this review, we will summarize recent advances in research on the role of adipose tissue macrophages with aging-associated insulin resistance and discuss their potential therapeutic targets for preventing and treating aging and aging-related diseases.
    Keywords:  Adipose tissue macrophages; Age; Insulin resistance
    DOI:  https://doi.org/10.1186/s12576-021-00820-2
  2. Sci Rep. 2021 Dec 08. 11(1): 23598
      Acute cold induces beige adipocyte protein marker expression in human subcutaneous white adipose tissue (SC WAT) from both the cold treated and contralateral leg, and the immune system regulates SC WAT beiging in mice. Cold treatment significantly increased the gene expression of the macrophage markers CD68 and 86 in SC WAT. Therefore, we comprehensively investigated the involvement of macrophages in SC WAT beiging in lean and obese humans by immunohistochemistry. Cold treatment significantly increased CD163/CD68 macrophages in SC WAT from the cold treated and contralateral legs of lean and obese subjects, and had similar effects on CD206/CD68 macrophages, whereas the effects on CD86/CD68 macrophages were inconsistent between lean and obese. However, linear regression analysis did not find significant relationships between the change in macrophage numbers and the change in UCP1 protein abundance. A high percentage of CD163 macrophages in SC WAT expressed UCP1, and these UCP1 expressing CD163 macrophages were significantly increased by cold treatment in SC WAT of lean subjects. In conclusion, our results suggest that CD163 macrophages are involved in some aspect of the tissue remodeling that occurs during SC WAT beiging in humans after cold treatment, but they are likely not direct mediators of the beiging process.
    DOI:  https://doi.org/10.1038/s41598-021-03014-3
  3. Cell. 2021 Nov 30. pii: S0092-8674(21)01333-7. [Epub ahead of print]
      While intestinal Th17 cells are critical for maintaining tissue homeostasis, recent studies have implicated their roles in the development of extra-intestinal autoimmune diseases including multiple sclerosis. However, the mechanisms by which tissue Th17 cells mediate these dichotomous functions remain unknown. Here, we characterized the heterogeneity, plasticity, and migratory phenotypes of tissue Th17 cells in vivo by combined fate mapping with profiling of the transcriptomes and TCR clonotypes of over 84,000 Th17 cells at homeostasis and during CNS autoimmune inflammation. Inter- and intra-organ single-cell analyses revealed a homeostatic, stem-like TCF1+ IL-17+ SLAMF6+ population that traffics to the intestine where it is maintained by the microbiota, providing a ready reservoir for the IL-23-driven generation of encephalitogenic GM-CSF+ IFN-γ+ CXCR6+ T cells. Our study defines a direct in vivo relationship between IL-17+ non-pathogenic and GM-CSF+ and IFN-γ+ pathogenic Th17 populations and provides a mechanism by which homeostatic intestinal Th17 cells direct extra-intestinal autoimmune disease.
    Keywords:  CNS inflammation; GM-CSF; IFNγ; IL-17; Th17 cells; autoimmunity; fate-mapping; gut-brain axis; multiple sclerosis; stem-like T cells
    DOI:  https://doi.org/10.1016/j.cell.2021.11.018