bims-antpol Biomed News
on Antiviral properties of polyphenols
Issue of 2024‒10‒06
six papers selected by
Rick Sheridan, EMSKE Phytochem



  1. Int J Mol Sci. 2024 Sep 14. pii: 9930. [Epub ahead of print]25(18):
      Feline infectious peritonitis (FIP), a serious infectious disease in cats, has become a challenging problem for pet owners and the industry due to the lack of effective vaccinations and medications for prevention and treatment. Currently, most natural compounds have been proven to have good antiviral activity. Hence, it is essential to develop efficacious novel natural compounds that inhibit FIPV infection. Our study aimed to screen compounds with in vitro anti-FIPV effects from nine natural compounds that have been proven to have antiviral activity and preliminarily investigate their mechanisms of action. In this study, the CCK-8 method was used to determine the maximum noncytotoxic concentration (MNTC), 50% cytotoxic concentration (CC50), and 50% effective concentration (EC50) of natural compounds on CRFK cells and the maximum inhibition ratio (MIR) of the compounds inhibit FIPV. The effect of natural compounds on FIPV-induced apoptosis was detected via Annexin V-FITC/PI assay. Network pharmacology (NP), molecular docking (MD), and 4D label-free quantitative (4D-LFQ) proteomic techniques were used in the joint analysis the mechanism of action of the screened natural compounds against FIPV infection. Finally, Western blotting was used to validate the analysis results. Among the nine natural compounds, baicalin had good antiviral effects, with an MIR > 50% and an SI > 3. Baicalin inhibited FIPV-induced apoptosis. NP and MD analyses showed that AKT1 was the best target of baicalin for inhibiting FIPV infection. 4D-LFQ proteomics analysis showed that baicalin might inhibit FIPV infection by modulating the PI3K-AKT pathway and the apoptosis pathway. The WB results showed that baicalin promoted the expression of EGFR, PI3K, and Bcl-2 and inhibited the expression of cleaved caspase 9 and Bax. This study found that baicalin regulated the PI3K-AKT pathway and the apoptosis pathway in vitro and inhibited FIPV-induced apoptosis, thus exerting anti-FIPV effects.
    Keywords:  baicalin; feline infectious peritonitis; molecular docking; network pharmacology; proteomics
    DOI:  https://doi.org/10.3390/ijms25189930
  2. Life (Basel). 2024 Sep 19. pii: 1180. [Epub ahead of print]14(9):
      Disease's severity, mortality rates, and common failures to achieve clinical improvement during the unprecedented COVID-19 pandemic exposed the emergency need for new antiviral therapeutics with higher efficacy and fewer adverse effects. This study explores the potential to encapsulate multi-component plant extracts in liposomes as optimized delivery systems and to verify if they exert inhibitory effects against human seasonal betacoronavirus OC43 (HCoV-OC43) in vitro. The selection of Sambucus nigra, Potentilla reptans, Allium sativum, Aesculus hippocastanum, and Glycyrrhiza glabra L. plant extracts was based on their established pharmacological and antiviral properties. The physicochemical characterization of extract-loaded liposomes was conducted by DLS and electrokinetics. Encapsulated amounts of the extract were evaluated based on the total flavonoid content (TFC) and total polyphenol content (TPC) by colorimetric methods. The BALB 3T3 neutral red uptake (NRU) phototoxicity/cytotoxicity assay was used to estimate compounds' safety. Photo irritation factors (PIFs) of the liposomes containing extracts were <2 which assigned them as non-phototoxic substances. The antiviral capacities of liposomes containing medicinal plant extracts against HCoV-OC43 were measured by the cytopathic effect inhibition test in susceptible HCT-8 cells. The antiviral activity increased by several times compared to "naked" extracts' activity reported previously. A. hippocastanum extract showed 16 times higher inhibitory properties reaching a selectivity index (SI) of 58.96. Virucidal and virus-adsorption effects were investigated using the endpoint dilution method and ∆lgs comparison with infected and untreated controls. The results confirmed that nanoparticles do not directly affect the viral surface or cell membrane, but only serve as carriers of the active substances and the observed protection is due solely to the intracellular action of the extracts.
    Keywords:  antiviral activity; chitosan; coronavirus HCoV-OC43; cytotoxicity; drug release; encapsulation; liposomes; natural extracts; natural inhibitors of viral replication; phototoxicity
    DOI:  https://doi.org/10.3390/life14091180
  3. Pathogens. 2024 Sep 04. pii: 761. [Epub ahead of print]13(9):
      The influenza A virus poses a serious threat to human health and is an important global public health issue. The drugs currently used for treatment are becoming increasingly ineffective against influenza A viruses and require the development of new antiviral drugs. Angelica tenuissima Nakai (ATN), a traditional herbal medicine belonging to the Umbelliferae family, exhibits a broad range of pharmacological activities, including inflammation, headache, and cold symptoms. In the present study, based on target protein identification, functional enrichment analysis, and gene set comparisons, we first suggested that ATN has potential therapeutic effects against influenza A virus infection. Next, methylthiazol tetrazolium (MTT) and sulforhodamine B colorimetric (SRB) assay results revealed that ATN exhibited low cytotoxicity in Madin-Darby canine kidney (MDCK) cells. The antiviral properties of ATN were observed against H1N1 and H3N2 virus strains. Microscopy confirmed the increased survival rate of the host cells. Further time-of-addition experiments revealed that the addition of ATN before virus adsorption showed similar results to the whole period of treatment. The pre- and co-treated groups showed lower levels of viral RNA (M1 protein). The results of this study suggest that ATN exhibits antiviral properties against the influenza A virus. These therapeutic properties of ATN can serve as a theoretical basis for further research on the applicability of ATN in the development of antiviral agents.
    Keywords:  Angelica tenuissima Nakai; antiviral; influenza A virus
    DOI:  https://doi.org/10.3390/pathogens13090761
  4. Microorganisms. 2024 Sep 02. pii: 1813. [Epub ahead of print]12(9):
      The antiviral efficacy of cell-extracts (CEs) derived from cypress (Chamaecyparis obtusa (Siebold & Zucc.) Endl., C. obtusa) and cedar (Cryptomeria japonica (Thunb. ex. L.) D.Don, C. japonica) was assessed using phi6 and MS2 bacteriophages, which are widely accepted surrogate models for enveloped and non-enveloped viruses, in order to verify their potential use as antiviral agents. Our results indicate that CEs derived from C. obtusa are dominantly composed of terpinen-4-ol (18.0%), α-terpinyl acetate (10.1%), bornyl acetate (9.7%), limonene (7.1%), and γ-terpinene (6.7%), while CEs derived from C. japonica are dominantly composed of terpinen-4-ol (48.0%) and α-pinene (15.9%), which exhibited robust antiviral activity against phi6 bacteriophage. Both CEs successfully inactivated the phi6 bacteriophage below the detection limit (10 PFU/mL) within a short exposure time of 30 s (log reduction value, LRV > 4). Through exposure experiments utilizing CEs with content ratios prepared via 2-fold serial dilutions (ranging from 3.13% to 100%), we demonstrated that the antiviral effect could be sustained up to a concentration of 25% (C. obtusa LRV = 3.8, C. japonica LRV > 4.3 at a 25% CE content ratio for each species). However, CEs with content ratios below 12.5% did not produce a significant reduction in bacteriophage concentration and consequently lost their antiviral effects. Conversely, both CEs did not exhibit antiviral activity against MS2 bacteriophage, a non-enveloped virus. Our findings reveal for the first time the potential of CEs derived from C. obtusa and C. japonica for use as antiviral agents specifically targeting enveloped viruses.
    Keywords:  Chamaecyparis obtusa; Cryptomeria japonica; antiviral activity; bacteriophages; cold vacuum extraction; plant-derived cell extract
    DOI:  https://doi.org/10.3390/microorganisms12091813
  5. Immunotargets Ther. 2024 ;13 487-499
      Background: Respiratory viral infections are a leading cause of severe diseases and mortality; therefore, novel treatments effective for their prevention are highly requested. Here, we identified a broad-spectrum antiviral activity of a natural exopolysaccharide, EPS T14, purified from a marine thermotolerant strain of Bacillus licheniformis strain T14.Methods: The effects on human normal nasal epithelial cells (HNEpCs) following treatment with EPS T14 was evaluated at different time points and with increasing concentration of compound. To assess the antiviral properties, viability of HNEpCs treated with EPS T14 was analysed following infection with different respiratory viruses.
    Results: Neither toxicity nor pro-inflammatory properties were observed in vitro on HNEpCs treated with EPS T14 up to high concentrations, thus ensuring its safety. Cell culture-based assays revealed that treatment of HNEpCs with EPS T14 (used at 400ug/mL) results in efficient prevention of cell infection by different respiratory viruses through physically hindering the entry of the viruses via cell surface receptors. Interestingly, in addition to this prophylactic antiviral activity, EPS T14 also shows a long-lasting efficacy by inhibiting viral spread in the cell culture. Finally, combination of EPS T14 with a hypertonic saline solution shows a synergistic antiviral activity.
    Conclusion: EPS T14 can exert both prophylactic and therapeutic antiviral activity by blocking viral attachment to cellular receptors and could therefore represent a promising antiviral agent for preventing infections by different respiratory viruses.
    Keywords:  EPSs; exopolysaccharides; infection prophylaxis; nasal epithelium; respiratory virus; viral infection
    DOI:  https://doi.org/10.2147/ITT.S470319
  6. Antioxidants (Basel). 2024 Sep 10. pii: 1097. [Epub ahead of print]13(9):
      The extraction of bioactive compounds from food by-products is one of the most important research areas for the nutraceutical, pharmaceutical, and food industries. This research aimed to evaluate the efficiency of Ultrasound-Assisted Extraction (UAE) and Microwave-Assisted Extraction (MAE), either alone or in combination, of phenolic compounds from cocoa bean shells (CBSs). These extraction techniques were compared with conventional methods, such as under simple magnetic stirring and the Soxhlet apparatus. After the preliminary characterization of the gross composition of CBSs, the total polyphenol content and radical scavenging of extracts obtained from both raw and defatted cocoa bean shells were investigated. Quantification of the main polyphenolic compounds was then performed by RP-HPLC-DAD, identifying flavonoids and phenolic acids, as well as clovamide. The application of MAE and UAE resulted in a similar or superior extraction of polyphenols when compared with traditional methods; the concentration of individual polyphenols was variously influenced by the extraction methods employed. Combining MAE and UAE at 90 °C yielded the highest antiradical activity of the extract. Spectrophotometric analysis confirmed the presence of high-molecular-weight melanoidins, which were present in higher concentrations in the extracts obtained using MAE and UAE, especially starting from raw material. In conclusion, these results emphasize the efficiency of MAE and UAE techniques in obtaining polyphenol-rich extracts from CBS and confirm this cocoa by-product as a valuable biomass for the recovery of antioxidant compounds, with a view to possible industrial scale-up.
    Keywords:  Theobroma cacao; by-product valorization; cocoa bean shells; microwave-assisted extraction; polyphenols; ultrasound-assisted extraction
    DOI:  https://doi.org/10.3390/antiox13091097