bims-apauto Biomed News
on Apoptosis and autophagy
Issue of 2021‒09‒12
fourteen papers selected by
Su Hyun Lee
Seoul National University


  1. Nat Cell Biol. 2021 Sep 08.
      The extracellular-signal-regulated kinases ERK1 and ERK2 (hereafter ERK1/2) represent the foremost mitogenic pathway in mammalian cells, and their dysregulation drives tumorigenesis and confers therapeutic resistance. ERK1/2 are known to be activated by MAPK/ERK kinase (MEK)-mediated phosphorylation. Here, we show that ERK1/2 are also modified by lysine-63 (K63)-linked polyubiquitin chains. We identify the tripartite motif-containing protein TRIM15 as a ubiquitin ligase and the tumour suppressor CYLD as a deubiquitinase of ERK1/2. TRIM15 and CYLD regulate ERK ubiquitination at defined lysine residues through mutually exclusive interactions as well as opposing activities. K63-linked polyubiquitination enhances ERK interaction with and activation by MEK. Downregulation of TRIM15 inhibits the growth of both drug-responsive and drug-resistant melanomas. Moreover, high TRIM15 expression and low CYLD expression are associated with poor prognosis of patients with melanoma. These findings define a role of K63-linked polyubiquitination in the ERK signalling pathway and suggest a potential target for cancer therapy.
    DOI:  https://doi.org/10.1038/s41556-021-00732-8
  2. Int J Mol Sci. 2021 Aug 25. pii: 9182. [Epub ahead of print]22(17):
      Autophagy is a critical cytoprotective mechanism against stress, which is initiated by the protein kinase Unc-51-like kinase 1 (ULK1) complex. Autophagy plays a role in both inhibiting the progression of diseases and facilitating pathogenesis, so it is critical to elucidate the mechanisms regulating individual components of the autophagy machinery under various conditions. Here, we examined whether ULK1 complex component autophagy-related protein 101 (ATG101) is downregulated via ubiquitination, and whether this in turn suppresses autophagy activity in cancer cells. Knockout of ATG101 in cancer cells using CRISPR resulted in severe growth retardation and lower survival under nutrient starvation. Transfection of mutant ATG101 revealed that the C-terminal region is a key domain of ubiquitination, while co-immunoprecipitation and knockdown experiments revealed that HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1(HUWE1) is a major E3 ubiquitin ligase targeting ATG101. Protein levels of ATG101 was more stable and the related-autophagy activity was higher in HUWE1-depleted cancer cells compared to wild type (WT) controls, indicating that HUWE1-mediated ubiquitination promotes ATG101 degradation. Moreover, enhanced autophagy in HUWE1-depleted cancer cells was reversed by siRNA-mediated ATG101 knockdown. Stable ATG101 level in HUWE1-depleted cells was a strong driver of autophagosome formation similar to upregulation of the known HUWE1 substrate WD repeat domain, phosphoinositide interacting 2 (WIPI2). Cellular survival rates were higher in HUWE1-knockdown cancer cells compared to controls, while concomitant siRNA-mediated ATG101 knockdown tends to increase apoptosis rate. Collectively, these results suggest that HUWE1 normally serves to suppress autophagy by ubiquitinating and triggering degradation of ATG101 and WIPI2, which in turn represses the survival of cancer cells. Accordingly, ATG101-mediated autophagy may play a critical role in overcoming metabolic stress, thereby contributing to the growth, survival, and treatment resistance of certain cancers.
    Keywords:  E3 ubiquitin ligase; HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1(HUWE1); Unc-51-like kinase 1(ULK1); WD repeat domain, phosphoinositide interacting 2 (WIPI2); autophagy; autophagy-related gene 101(ATG101); cancer; mitophagy; ubiquitination
    DOI:  https://doi.org/10.3390/ijms22179182
  3. Autophagy. 2021 Sep 05. 1-2
      It would be quite convenient if every protein had one distinct function, one distinct role in just a single cellular process. In the field of macroautophagy/autophagy, however, we are increasingly finding that this is not the case; several autophagy proteins have two or more roles within the process of autophagy and many even "moonlight" as functional members of entirely different cellular processes. This is perhaps best exemplified by the Atg8-family proteins. These dynamic proteins have already been reported to serve several functions both within autophagy (membrane tethering, membrane fusion, binding to cargo receptors, binding to autophagy machinery) and beyond (LC3-associated phagocytosis, formation of EDEMosomes, immune signaling) but as Maruyama and colleagues suggest in their recent report, this list of functions may not yet be complete.
    Keywords:  Autophagosome; autophagy; lipidation; membrane expansion; phagophore
    DOI:  https://doi.org/10.1080/15548627.2021.1967566
  4. Elife. 2021 Sep 10. pii: e70372. [Epub ahead of print]10
      Autophagy is a cellular process that degrades cytoplasmic cargo by engulfing it in a double membrane vesicle, known as the autophagosome, and delivering it to the lysosome. The ATG12-5-16L1 complex is responsible for conjugating members of the ubiquitin-like ATG8 protein family to phosphatidylethanolamine in the growing autophagosomal membrane, known as the phagophore. ATG12-5-16L1 is recruited to the phagophore by a subset of the phosphatidylinositol 3-phosphate-binding seven bladed â-propeller WIPI proteins. We determined the crystal structure of WIPI2d in complex with the WIPI2 interacting region (W2IR) of ATG16L1 comprising residues 207-230 at 1.85 Å resolution. The structure shows that the ATG16L1 W2IR adopts an alpha helical conformation and binds in an electropositive and hydrophobic groove between WIPI2 â-propeller blades 2 and 3. Mutation of residues at the interface reduces or blocks the recruitment of ATG12-5-16L1 and the conjugation of the ATG8 protein LC3B to synthetic membranes. Interface mutants show a decrease in starvation-induced autophagy. Comparisons across the four human WIPIs suggest that WIPI1 and 2 belong to a W2IR-binding subclass responsible for localizing ATG12-5-16L1 and driving ATG8 lipidation, whilst WIPI3 and 4 belong to a second W34IR-binding subclass responsible for localizing ATG2, and so directing lipid supply to the nascent phagophore. The structure provides a framework for understanding the regulatory node connecting two central events in autophagy initiation, the action of the autophagic PI 3-kinase complex on the one hand, and ATG8 lipidation on the other.
    Keywords:  cell biology; human
    DOI:  https://doi.org/10.7554/eLife.70372
  5. Autophagy. 2021 Sep 07. 1-3
      Clearance of misfolded proteins from the secretory pathway often occurs soon after their biosynthesis by endoplasmic reticulum (ER)-associated protein degradation (ERAD). However, certain types of misfolded proteins are not ERAD substrates and exit the ER. They are then scrutinized by ill-defined post-ER quality control (post-ERQC) mechanisms and are frequently routed to the vacuole/lysosome for degradation. Glycosylphosphatidylinositol-anchored proteins (GPI-APs) constitute a class of proteins of the secretory pathway that mostly depends on post-ERQC. How misfolded GPI-APs are detected, transported to the vacuole/lysosome and taken up by this organelle was poorly defined. Originating from the intriguing observation that several misfolded GPI-APs accumulate in the yeast vacuolar membrane in the absence of the major vacuolar protease Pep4, we designed an unbiased genome-wide screen in yeast and followed the trafficking of the misfolded fluorescent GPI-AP Gas1* from the ER to the vacuolar lumen. Our results reveal that post-ERQC of GPI-APs is linked with a novel type of microautophagy.
    DOI:  https://doi.org/10.1080/15548627.2021.1971929
  6. Autophagy. 2021 Sep 05. 1-3
      Among other mechanisms, mitochondrial membrane dynamics including mitochondrial fission and fusion, and the activity of the ubiquitin (Ub)-proteasome system (UPS) both are critical for maintaining mitochondrial function. To advance our knowledge of the role of mitochondrial fission, the UPS, and how they coordinatively affect mitochondrial response to proteotoxicity, we analyzed mitochondrial ubiquitination and mitochondria-specific autophagy (mitophagy) in E3 Ub ligase PRKN/parkin-expressing and -deficient cells. Through imaging, biochemical, and genetic analyses, we found that in a model of acute reduction of mitochondrial translation fidelity (MTF) some population of mitochondria within a single cell are enriched, while some showed reduced levels of CYCS (cytochrome c, somatic) and CPOX (coproporphyrinogen oxidase) proteins, both located in the intermembrane space (IMS); henceforth called "mosaic distribution". Formation of mosaic mitochondria requires mitochondrial fission and active mitochondrial translation. In cell lines deficient in PRKN activity, this process is followed by severing the outer mitochondrial membrane (OMM) and ubiquitination of the inner mitochondrial membrane (IMM) proteins (including TRAP1 and CPOX), recruitment of autophagy receptors, and formation of mito-autophagosomes. In contrast, in PRKN-expressing cells, mitochondria with high CYCS and CPOX levels are preferentially targeted by PRKN, leading to OMM ubiquitination and canonical PRKN-PINK1-mediated autophagy.
    Keywords:  DRP1; Parkin; mitochondria; mitochondrial translation; mitophagy; ubiquitin
    DOI:  https://doi.org/10.1080/15548627.2021.1964887
  7. Semin Cancer Biol. 2021 Sep 06. pii: S1044-579X(21)00227-3. [Epub ahead of print]
      Autophagy, a lysosomal catabolic process, involves degradation of cellular materials, protein aggregate, and dysfunctional organelles to maintain cellular homeostasis. Strikingly, autophagy exhibits a dual-sided role in cancer; on the one hand, it promotes clearance of transformed cells and inhibits tumorigenesis, while cytoprotective autophagy has a role in sustaining cancer. The autophagy signaling in the tumor microenvironment (TME) during cancer growth and therapy is not adequately understood. The review highlights the role of autophagy signaling pathways to support cancer growth and progression in adaptation to the oxidative and hypoxic context of TME. Furthermore, autophagy contributes to regulating the metabolic switch for generating sufficient levels of high-energy metabolites, including amino acids, ketones, glutamine, and free fatty acids for cancer cell survival. Interestingly, autophagy has a critical role in modulating the tumor-associated fibroblast resulting in different cytokines and paracrine signaling mediated angiogenesis and invasion of pre-metastatic niches to secondary tumor sites. Moreover, autophagy promotes immune evasion to inhibit antitumor immunity, and autophagy inhibitors enhance response to immunotherapy with infiltration of immune cells to the TME niche. Furthermore, autophagy in TME maintains and supports the survival of cancer stem cells resulting in chemoresistance and therapy recurrence. Presently, drug repurposing has enabled the use of lysosomal inhibitor-based antimalarial drugs like chloroquine and hydroxychloroquine as clinically available autophagy inhibitors in cancer therapy. We focus on the recent developments of multiple autophagy modulators from pre-clinical trials and the challenges in developing autophagy-based cancer therapy.
    Keywords:  Autophagy; Hypoxia; Immune escape; Metabolism; Tumor microenvironment; clinical trials
    DOI:  https://doi.org/10.1016/j.semcancer.2021.09.003
  8. Autophagy. 2021 Sep 10. 1-12
      Glycophagy is the autophagic degradation of glycogen via the lysosomal enzyme GAA/alpha-acid glucosidase. Glycophagy is considered a housekeeping process to degrade poorly branched glycogen particles, but the regulation and role of glycophagy in skeletal muscle metabolism remains enigmatic. Herein, prior muscle contraction promoted glycogen supercompensation 24 and 48 h post contraction, an effect associated with reduced glycophagy. Moreover, NOTCH or cAMP signaling promoted glycophagy, whereas acute glycophagy deficiency rewired cell metabolism by reducing glycolysis and enhancing AMPK and PPAR signaling and fatty acid and glutamine metabolism. These metabolic adaptations were associated with reduced inflammation and triglyceride content but enhanced phosphoinositide 3-kinase (PI3K)-AKT/protein kinase B signaling and insulin action, the latter of which was abolished by exogenous oxidative stress. Collectively, these data suggest glycophagy is dynamically regulated, while the function of glycophagy can be extended beyond a housekeeping process to having an additional role in regulating energy metabolism and insulin action.Abbreviations: AMPK, AMP-activated protein kinase; ASM, acid soluble metabolites; cAMP, cyclic adenosine monophosphate; EPS, electrical pulse stimulation; FCCP, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone; GAA, glucosidase, alpha, acid; mTOR, mechanistic target of rapamycin kinase; NAD, nicotinamide adenine dinucleotide; PARP, poly (ADP-ribose) polymerase family; PI3K, phosphoinositide 3-kinase; PPAR, peroxisome proliferator activated receptor ; PYGM, muscle glycogen phosphorylase; STBD1, starch binding domain 1; TFEB, transcription factor EB.
    Keywords:  Alpha acid glucosidase; fatty acid oxidation; glutamine; glycogen supercompensation; glycolysis; insulin action
    DOI:  https://doi.org/10.1080/15548627.2021.1969633
  9. Cell Commun Signal. 2021 Sep 07. 19(1): 91
      Autophagy is catabolic process by degradation of intracellular components in lysosome including proteins, lipids, and mitochondria in response to nutrient deficiency or stress such as hypoxia or chemotherapy. Increasing evidence suggests that autophagy could induce immune checkpoint proteins (PD-L1, MHC-I/II) degradation of cancer cells, which play an important role in regulating cancer cell immune escape. In addition to autophagic degradation of immune checkpoint proteins, autophagy induction in immune cells (macrophages, dendritic cells) manipulates antigen presentation and T cell activity. These reports suggest that autophagy could negatively or positively regulate cancer cell immune escape by immune checkpoint protein and antigens degradation, cytokines release, antigens generation. These controversial phenomenon of autophagy on cancer cell immune evasion may be derived from different experimental context or models. In addition, autophagy maybe exhibit a role in regulating host excessive immune response. So rational combination with autophagy could enhance the efficacy of cancer immunotherapy. In this review, the current progress of autophagy on cancer immune escape is discussed. Video Abstract.
    Keywords:  Antigen presentation; Autophagy; Cancer therapy; Immune cells; Immune escape
    DOI:  https://doi.org/10.1186/s12964-021-00769-0
  10. mBio. 2021 Sep 07. e0109721
      The Epstein-Barr virus (EBV) protein LMP1 serves as a paradigm that engages complicated ubiquitination-mediated mechanisms to activate multiple transcription factors. p62 is a ubiquitin sensor and a signal-transducing adaptor that has multiple functions in diverse contexts. However, the interaction between p62 and oncogenic viruses is poorly understood. We recently reported a crucial role for p62 in oncovirus-mediated oxidative stress by acting as a selective autophagy receptor. In this following pursuit, we further discovered that p62 is upregulated in EBV type 3 compared to type 1 latency, with a significant contribution from NF-κB and AP1 activities downstream of LMP1 signaling. In turn, p62 participates in LMP1 signal transduction through its interaction with TRAF6, promoting TRAF6 ubiquitination and activation. As expected, short hairpin RNA (shRNA)-mediated knockdown (KD) of p62 transcripts reduces LMP1-TRAF6 interaction and TRAF6 ubiquitination, as well as p65 nuclear translocation, which was assessed by Amnis imaging flow cytometry. Strikingly, LMP1-stimulated NF-κB, AP1, and Akt activities are all markedly reduced in p62-/- mouse embryo fibroblasts (MEFs) and in EBV-negative Burkitt's lymphoma (BL) cell lines with CRISPR-mediated knockout (KO) of the p62-encoding gene. However, EBV-positive BL cell lines (type 3 latency) with CRISPR-mediated KO of the p62-encoding gene failed to survive. In consequence, shRNA-mediated p62 KD impairs the ability of LMP1 to regulate its target gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of lymphoblastic cell lines (LCLs). These important findings have revealed a previously unrecognized novel role for p62 in EBV latency and oncogenesis, which advances our understanding of the mechanism underlying virus-mediated oncogenesis. IMPORTANCE As a ubiquitin sensor and a signal-transducing adaptor, p62 is crucial for NF-κB activation, which involves the ubiquitin machinery, in diverse contexts. However, whether p62 is required for EBV LMP1 activation of NF-κB is an open question. In this study, we provide evidence that p62 is upregulated in EBV type 3 latency and, in turn, p62 mediates LMP1 signal transduction to NF-κB, AP1, and Akt by promoting TRAF6 ubiquitination and activation. In consequence, p62 deficiency negatively regulates LMP1-mediated gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of LCLs. These important findings identified p62 as a novel signaling component of the key viral oncogenic signaling pathway.
    Keywords:  EBV; LMP1; herpesviruses; p62; ubiquitination; viral oncogenesis
    DOI:  https://doi.org/10.1128/mBio.01097-21
  11. Int J Mol Sci. 2021 Sep 06. pii: 9629. [Epub ahead of print]22(17):
      The ubiquitin system, present in all eukaryotes, contributes to regulating multiple types of cellular protein processes such as cell signaling, cell cycle, and receptor trafficking, and it affects the immune response. In most types of cancer, unusual events in ubiquitin-mediated signaling pathway modulation can lead to a variety of clinical outcomes, including tumor formation and metastasis. Similarly, ubiquitination acts as a core component, which contributes to the alteration of cell signaling activity, dictating biosignal turnover and protein fates. As lung cancer acquires the most commonly mutated proteins, changes in the ubiquitination of the proteins contribute to the development of lung cancer. Various inhibitors targeting the ubiquitin system have been developed for clinical applications in lung cancer treatment. In this review, we summarize the current research advances in therapeutics for lung cancer by targeting the ubiquitin system.
    Keywords:  E3 ligase; cell signaling; deubiquitination; lung cancer; ubiquitin; ubiquitination
    DOI:  https://doi.org/10.3390/ijms22179629
  12. Nat Commun. 2021 Sep 06. 12(1): 5282
      Homeostasis is one of the fundamental concepts in physiology. Despite remarkable progress in our molecular understanding of amino acid transport, metabolism and signaling, it remains unclear by what mechanisms cytosolic amino acid concentrations are maintained. We propose that amino acid transporters are the primary determinants of intracellular amino acid levels. We show that a cell's endowment with amino acid transporters can be deconvoluted experimentally and used this data to computationally simulate amino acid translocation across the plasma membrane. Transport simulation generates cytosolic amino acid concentrations that are close to those observed in vitro. Perturbations of the system are replicated in silico and can be applied to systems where only transcriptomic data are available. This work explains amino acid homeostasis at the systems-level, through a combination of secondary active transporters, functionally acting as loaders, harmonizers and controller transporters to generate a stable equilibrium of all amino acid concentrations.
    DOI:  https://doi.org/10.1038/s41467-021-25563-x
  13. Proc Natl Acad Sci U S A. 2021 Sep 14. pii: e2025834118. [Epub ahead of print]118(37):
      Regulation of apoptosis is tightly linked with the targeting of numerous Bcl-2 proteins to the mitochondrial outer membrane (MOM), where their activation or inhibition dictates cell death or survival. According to the traditional view of apoptotic regulation, BH3-effector proteins are indispensable for the cytosol-to-MOM targeting and activation of proapoptotic and antiapoptotic members of the Bcl-2 protein family. This view is challenged by recent studies showing that these processes can occur in cells lacking BH3 effectors by as yet to be determined mechanism(s). Here, we exploit a model membrane system that recapitulates key features of MOM to demonstrate that the proapoptotic Bcl-2 protein BAX and antiapoptotic Bcl-xL have an inherent ability to interact with membranes in the absence of BH3 effectors, but only in the presence of cellular concentrations of Mg2+/Ca2+ Under these conditions, BAX and Bcl-xL are selectively targeted to membranes, refolded, and activated in the presence of anionic lipids especially the mitochondrial-specific lipid cardiolipin. These results provide a mechanistic explanation for the mitochondrial targeting and activation of Bcl-2 proteins in cells lacking BH3 effectors. At cytosolic Mg2+ levels, the BH3-independent activation of BAX could provide localized amplification of apoptotic signaling at regions enriched in cardiolipin (e.g., contact sites between MOM and mitochondrial inner membrane). Increases in MOM cardiolipin, as well as cytosolic [Ca2+] during apoptosis could further contribute to its MOM targeting and activity. Meanwhile, the BH3-independent targeting and activation of Bcl-xL to the MOM is expected to counter the action of proapoptotic BAX, thereby preventing premature commitment to apoptosis.
    Keywords:  apoptosis; divalent cations; membrane protein folding; mitochondria permeabilization; protein–lipid interactions
    DOI:  https://doi.org/10.1073/pnas.2025834118
  14. Nat Commun. 2021 09 06. 12(1): 5263
      Immunomodulatory drugs (IMiDs) are important for the treatment of multiple myeloma and myelodysplastic syndrome. Binding of IMiDs to Cereblon (CRBN), the substrate receptor of the CRL4CRBN E3 ubiquitin ligase, induces cancer cell death by targeting key neo-substrates for degradation. Despite this clinical significance, the physiological regulation of CRBN remains largely unknown. Herein we demonstrate that Wnt, the extracellular ligand of an essential signal transduction pathway, promotes the CRBN-dependent degradation of a subset of proteins. These substrates include Casein kinase 1α (CK1α), a negative regulator of Wnt signaling that functions as a key component of the β-Catenin destruction complex. Wnt stimulation induces the interaction of CRBN with CK1α and its resultant ubiquitination, and in contrast with previous reports does so in the absence of an IMiD. Mechanistically, the destruction complex is critical in maintaining CK1α stability in the absence of Wnt, and in recruiting CRBN to target CK1α for degradation in response to Wnt. CRBN is required for physiological Wnt signaling, as modulation of CRBN in zebrafish and Drosophila yields Wnt-driven phenotypes. These studies demonstrate an IMiD-independent, Wnt-driven mechanism of CRBN regulation and provide a means of controlling Wnt pathway activity by CRBN, with relevance for development and disease.
    DOI:  https://doi.org/10.1038/s41467-021-25634-z