bims-apauto Biomed News
on Apoptosis and autophagy
Issue of 2021–12–19
eight papers selected by
Su Hyun Lee, Seoul National University



  1. Autophagy. 2021 Dec 12. 1-2
      The mechanisms controlling immunosurveillance and immunoevasion often operate simultaneously to the triggering of the oncogenic signaling that results in tumor initiation. The resolution of the balance between anti-cancer immune responses and pro-tumorigenic pathways determines if a tumor cell survives and can remodel the microenvironment to reinforce immunosuppression or is eliminated by the immune system. Cancer cells must endure a toxic and metabolically challenging milieu. In its various forms, autophagy provides a way for transformed cells to survive by promoting catabolism and detoxification. Mounting evidence suggests that the boundaries between cancer immunity and mitogenic and metabolic programs are diffuse, with the same molecules likely serving several diverse roles in immunity and metabolism during tumor initiation and progression. Our recent data provide mechanistic detail and functional relevance of a new paradigm whereby the same signaling elements control immunity and autophagy in cancer.
    Keywords:  Atypical PKC; ULK2; autophagy; immunosurveillance; interferon
    DOI:  https://doi.org/10.1080/15548627.2021.1991192
  2. Autophagy. 2021 Dec 14. 1-17
      Hypoxia is a common feature of solid tumors and is associated with increased tumor progression, resistance to therapy and increased metastasis. Hence, tumor hypoxia is a prognostic factor independent of treatment modality. To survive hypoxia, cells activate macroautophagy/autophagy. Paradoxically, in several cancer types, mutations or loss of essential autophagy genes have been reported that are associated with earlier onset of tumor growth. However, to our knowledge, the phenotypic and therapeutic consequences of autophagy deficiency have remained unexplored. In this study, we determined autophagy-defects in head and neck squamous cell carcinoma (HNSCC) and observed that expression of ATG12 (autophagy related 12) was lost in 25%-40% of HNSCC. In line, ATG12 loss is associated with absence of hypoxia, as determined by pimonidazole immunohistochemistry. Hence, ATG12 loss is associated with improved prognosis after therapy in two independent HNSCC cohorts and 7 additional cancer types. In vivo, ATG12 targeting resulted in decreased hypoxia tolerance, increased necrosis and sensitivity of the tumor to therapy, but in vitro ATG12-deficient cells displayed enhanced survival in nutrient-rich culture medium. Besides oxygen, delivery of glucose was hampered in hypoxic regions in vivo, which increases the reliance of cells on other carbon sources (e.g., L-glutamine). We observed decreased intracellular L-glutamine levels in ATG12-deficient cells during hypoxia and increased cell killing after L-glutamine depletion, indicating a central role for ATG12 in maintaining L-glutamine homeostasis. Our results demonstrate that ATG12low tumors represent a phenotypically different subtype that, due to the lowered hypoxia tolerance, display a favorable outcome after therapy.Abbreviations: ARCON:accelerated radiotherapy with carbogen and nicotinamide; ATG: autophagy related; BrdUrd: bromodeoxyuridine; CA9/CAIX: carbonic anhydrase 9; HIF1A/HIF1α: hypoxia inducible factor 1 subunit alpha; HNSCC: head and neck squamous cell carcinoma; HPV: human papilloma virus; HR: hazard ratio; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; mRNA: messenger ribonucleic acid; PCR: polymerase chain reaction; SLC2A1/GLUT1: solute carrier family 2 member 1; TCGA: the Cancer Genome Atlas; TME: tumor microenvironment; UTR: untranslated region; VEGF: vascular endothelial growth factor.
    Keywords:  Autophagy; cancer; glucose; head and neck cancer; hypoxia; prognosis; radiotherapy glutamine
    DOI:  https://doi.org/10.1080/15548627.2021.2008690
  3. Sci Rep. 2021 Dec 13. 11(1): 23907
      FIP200 is an essential autophagy gene implicated in the regulation of postnatal neural progenitor/stem cells (NSCs). However, the contribution of FIP200's canonical-autophagy function and its non-canonical functions to postnatal NSC maintenance remains unclear. Utilizing a recently generated Fip200-4A allele that specifically impairs FIP200's canonical-autophagy function, we found that non-canonical functions of FIP200 was required for regulation of mouse NSC maintenance and neurogenesis in vivo. Ablating the non-canonical functions of FIP200, but not its autophagy function, increased TBK1 activation and p62 phosphorylation at S403 in NSCs. Phosphorylation of p62 was dependent on TBK1 kinase activity and increased the propensity of p62 aggregate formation specifically in FIP200-null NSCs. Accordingly, inhibition of TBK1 by amlexanox reduced p62 aggregates and restored NSC maintenance and differentiation in Fip200hGFAP cKO mice. These results reveal a mechanism for the non-canonical functions of FIP200 in NSC maintenance and differentiation by limiting TBK1 activation and subsequently, p62 aggregate formation.
    DOI:  https://doi.org/10.1038/s41598-021-03404-7
  4. Front Pharmacol. 2021 ;12 794298
      Sepsis is a life-threatening syndrome induced by aberrant host response towards infection. The autophagy-lysosomal pathway (ALP) plays a fundamental role in maintaining cellular homeostasis and conferring organ protection. However, this pathway is often impaired in sepsis, resulting in dysregulated host response and organ dysfunction. Transcription factor EB (TFEB) is a master modulator of the ALP. TFEB promotes both autophagy and lysosomal biogenesis via transcriptional regulation of target genes bearing the coordinated lysosomal expression and regulation (CLEAR) motif. Recently, increasing evidences have linked TFEB and the TFEB dependent ALP with pathogenetic mechanisms and therapeutic implications in sepsis. Therefore, this review describes the existed knowledge about the mechanisms of TFEB activation in regulating the ALP and the evidences of their protection against sepsis, such as immune modulation and organ protection. In addition, TFEB activators with diversified pharmacological targets are summarized, along with recent advances of their potential therapeutic applications in treating sepsis.
    Keywords:  TFEB; TFEB activators; autophagy-lysosomal pathway; immunity; inflammation; sepsis
    DOI:  https://doi.org/10.3389/fphar.2021.794298
  5. J Biol Chem. 2021 Dec 14. pii: S0021-9258(21)01304-1. [Epub ahead of print] 101494
      Changing physiological conditions can increase the need for protein degradative capacity in eukaryotic cells. Both the ubiquitin-proteasome system and autophagy contribute to protein degradation. However, these processes can be differently regulated depending on the physiological conditions. Strikingly, proteasomes themselves can be a substrate for autophagy. The signals and molecular mechanisms that govern proteasome autophagy (proteaphagy) are only partly understood. Here, we used immunoblots, native gel analyses, and fluorescent microscopy to understand the regulation of proteaphagy in response to genetic and small molecule-induced perturbations. Our data indicate that chemical inhibition of the master nutrient sensor TORC1 (inhibition of which induces general autophagy) with rapamycin induces a bi-phasic response where proteasome levels are upregulated followed by an autophagy-dependent reduction. Surprisingly, several conditions that result in inhibited TORC1, such as caffeinine treatment or nitrogen starvation, only induced proteaphagy (i.e. without any proteasome upregulation), suggesting a convergence of signals upstream of proteaphagy under different physiological conditions. Indeed, we found that several conditions that activated general autophagy did not induce proteaphagy, further distinguishing proteaphagy from general autophagy. Consistent with this, we show that Atg11, a selective autophagy receptor, as well as the MAP kinases Mpk1, Mkk1, and Mkk2 all play a role in autophagy of proteasomes, while they are dispensable for general autophagy. Taken together, our data provide new insights into the molecular regulation of proteaphagy by demonstrating that degradation of proteasome complexes is specifically regulated under different autophagy-inducing conditions.
    Keywords:  autophagy; proteaphagy; proteasome; proteasome inhibitor; protein degradation; starvation; target of rapamycin (TOR); vacuole; yeast
    DOI:  https://doi.org/10.1016/j.jbc.2021.101494
  6. Front Cell Dev Biol. 2021 ;9 765859
      Regulatory cell death has been a major focus area of cancer therapy research to improve conventional clinical cancer treatment (e.g. chemotherapy and radiotherapy). Ferroptosis, a novel form of regulated cell death mediated by iron-dependent lipid peroxidation, has been receiving increasing attention since its discovery in 2012. Owing to the highly iron-dependent physiological properties of cancer cells, targeting ferroptosis is a promising approach in cancer therapy. In this review, we summarised the characteristics of ferroptotic cells, associated mechanisms of ferroptosis occurrence and regulation and application of the ferroptotic pathway in cancer therapy, including the use of ferroptosis in combination with other therapeutic modalities. In addition, we presented the challenges of using ferroptosis in cancer therapy and future perspectives that may provide a basis for further research.
    Keywords:  cancer therapy; ferroptosis; lipid peroxidation; reactive oxygen species; regulatory cell death
    DOI:  https://doi.org/10.3389/fcell.2021.765859
  7. Cancer Control. 2021 Jan-Dec;28:28 10732748211066311
      DNA mutation is a common event in the human body, but in most situations, it is fixed right away by the DNA damage response program. In case the damage is too severe to repair, the programmed cell death system will be activated to get rid of the cell. However, if the damage affects some critical components of this system, the genetic scars are kept and multiply through mitosis, possibly leading to cancer someday. There are many forms of programmed cell death, but apoptosis and necroptosis represent the default and backup strategy, respectively, in the maintenance of optimal cell population as well as in cancer prevention. For the same reason, the ideal approach for cancer treatment is to induce apoptosis in the cancer cells because it proceeds 20 times faster than tumor cell proliferation and leaves no mess behind. Induction of necroptosis can be the second choice in case apoptosis becomes hard to achieve, however, necroptosis finishes the job at a cost-inflammation.
    Keywords:  apoptosis; autophagy; cancer; necroptosis; programmed cell death
    DOI:  https://doi.org/10.1177/10732748211066311
  8. Sci Rep. 2021 Dec 14. 11(1): 24005
      Neutrophils release neutrophil extracellular traps (NETs), via NETosis, as a defense mechanism against pathogens. Neutrophils can release NETs spontaneously; however, the mechanisms underlying spontaneous NETosis remain unclear. Neutrophils isolated from healthy donors were tested for NET formation and autophagy at 1, 6, 12, and 24 h after incubation. Autophagy response was evaluated in response to various autophagy inducers and inhibitors. The relationship between autophagy and NETosis was detected in vivo using an ovalbumin-induced mouse model of asthma. We found that the increase in the proportion of spontaneous NETosis was time-dependent. The number of autophagy-positive cells also increased over time and LC3B protein played an integral role in NET formation. Trehalose (an inducer of mTOR-independent autophagy) treatment significantly increased NET formation, whereas rapamycin (an mTOR-dependent autophagy inducer) did not increase NET release by neutrophils. Compared with the control group, 3-methyladenine (an autophagy sequestration inhibitor) and hydroxychloroquine sulfate (autophagosome-lysosome fusion inhibitor) treatments significantly reduced the percentage of NET-positive cells. In vivo studies on ovalbumin-induced asthma lung sections revealed NETs and LC3B and citH3 proteins were found to co-localize with DNA. Our findings suggest that autophagy plays a crucial role in aging-related spontaneous NETosis.
    DOI:  https://doi.org/10.1038/s41598-021-03520-4