JMIR Ment Health. 2025 Nov 12. 12 e80371
BACKGROUND: Mental health researchers are increasingly using large language models (LLMs) to improve efficiency, yet these tools can generate fabricated but plausible-sounding content (hallucinations). A notable form of hallucination involves fabricated bibliographic citations that cannot be traced to real publications. Although previous studies have explored citation fabrication across disciplines, it remains unclear whether citation accuracy in LLM output systematically varies across topics within the same field that differ in public visibility, scientific maturity, and specialization.
OBJECTIVE: This study aims to examine the frequency and nature of citation fabrication and bibliographic errors in GPT-4o (Omni) outputs when generating literature reviews on mental health topics that varied in public familiarity and scientific maturity. We also tested whether prompt specificity (general vs specialized) influenced fabrication or accuracy rates.
METHODS: In June 2025, GPT-4o was prompted to generate 6 literature reviews (~2000 words; ≥20 citations) on 3 disorders representing different levels of public awareness and research coverage: major depressive disorder (high), binge eating disorder (moderate), and body dysmorphic disorder (low). Each disorder was reviewed at 2 levels of specificity: a general overview (symptoms, impacts, and treatments) and a specialized review (evidence for digital interventions). All citations were extracted (N=176) and systematically verified using Google Scholar, Scopus, PubMed, WorldCat, and publisher databases. Citations were classified as fabricated (no identifiable source), real with errors, or fully accurate. Fabrication and accuracy rates were compared by disorder and review type by using chi-square tests.
RESULTS: Across the 6 reviews, GPT-4o generated 176 citations; 35 (19.9%) were fabricated. Among the 141 real citations, 64 (45.4%) contained errors, most frequently incorrect or invalid digital object identifiers. Fabrication rates differed significantly by disorder (χ22=13.7; P=.001), with higher rates for binge eating disorder (17/60, 28%) and body dysmorphic disorder (14/48, 29%) than for major depressive disorder (4/68, 6%). While fabrication did not differ overall by review type, stratified analyses showed higher fabrication for specialized versus general reviews of binge eating disorder (11/24, 46% vs 6/36, 17%; P=.01). Accuracy rates also varied by disorder (χ22=11.6; P=.003), being lowest for body dysmorphic disorder (20/34, 59%) and highest for major depressive disorder (41/64, 64%). Accuracy rates differed by review type within some disorders, including higher accuracy for general reviews of major depressive disorder (26/34, 77% vs 15/30, 50%; P=.03).
CONCLUSIONS: Citation fabrication and bibliographic errors remain common in GPT-4o outputs, with nearly two-thirds of citations being fabricated or inaccurate. Reliability systematically varied by disorder familiarity and prompt specificity, with greater risks in less visible or specialized mental health topics. These findings highlight the need for careful prompt design, rigorous human verification of all model-generated references, and stronger journal and institutional safeguards to protect research integrity as LLMs are integrated into academic practice.
Keywords: AI; academic research; artificial intelligence; citations; large language models; mental health; psychiatry