bims-aucach Biomed News
on Autophagy and cachexia
Issue of 2022–04–17
twelve papers selected by
Kleiton Silva, Rowan University



  1. Wien Med Wochenschr. 2022 Apr 13.
      With growing life expectancy, the prevalence of frailty and sarcopenia will continuously increase during the next decades. Geographical differences have been described, and depending on the population studied, sarcopenia is evident in 10% of community-dwelling people, increasing up to 40 to 50% among those living in nursing homes. Sarcopenia is a complex age-related process of multifactorial pathogenesis, influenced by lifestyle, nutrition, biological processes during aging, and also immunological and endocrine mechanisms. For diagnostic criteria, physical parameters (muscle mass measurement) and functional aspects (muscle strength, gait speed, physical performance) are required. In routine clinical care, screening patients using the SARC‑F questionnaire is recommended by recent guidelines of the European Workgroup for Sarcopenia.
    Keywords:  Frailty; Inflammaging; Muscle strength; Myokines; Sarcopenia
    DOI:  https://doi.org/10.1007/s10354-022-00927-0
  2. Int J Mol Sci. 2022 Mar 28. pii: 3713. [Epub ahead of print]23(7):
      Middle-aged and master endurance athletes exhibit similar physical performance and long-term muscle adaptation to aerobic exercise. Nevertheless, we hypothesized that the short-term plasticity of the skeletal muscle might be distinctly altered for master athletes when they are challenged by a single bout of prolonged moderate-intensity exercise. Six middle-aged (37Y) and five older (50Y) master highly-trained athletes performed a 24-h treadmill run (24TR). Vastus lateralis muscle biopsies were collected before and after the run and assessed for proteomics, fiber morphometry, intramyocellular lipid droplets (LD), mitochondrial oxidative activity, extracellular matrix (ECM), and micro-vascularisation. Before 24TR, muscle fiber type morphometry, intramyocellular LD, oxidative activity, ECM and micro-vascularisation were similar between master and middle-aged runners. For 37Y runners, 24TR was associated with ECM thickening, increased capillary-to-fiber interface, and an 89% depletion of LD in type-I fibers. In contrast, for 50Y runners, 24TR did not alter ECM and capillarization and poorly depleted LDs. Moreover, an impaired succinate dehydrogenase activity and functional class scoring of proteomes suggested reduced oxidative phosphorylation post-24TR exclusively in 50Y muscle. Collectively, our data support that middle-aged and master endurance athletes exhibit distinct transient plasticity in response to a single bout of ultra-endurance exercise, which may constitute early signs of muscle aging for master athletes.
    Keywords:  aging; capillaries; exercise; extracellular matrix; lipid droplets; skeletal muscle
    DOI:  https://doi.org/10.3390/ijms23073713
  3. Acta Diabetol. 2022 Apr 16.
      Myopathy is the missing slot from the routine clinical checkup for diabetic complications. Similarly, its pathophysiological, metabolic, and molecular bases are insufficiently explored. In this review, the above issues are highlighted with a focus on skeletal muscle atrophy (also described as diabetic sarcopenia), in contrast to the normal histological, physiological, and molecular features of the muscles. Literature search using published data from different online resources was used. Several diabetic myopathy etiological factors are discussed explicitly including; inflammation and immunological responses, with emphasis on TNFα and IL-6 overproduction, oxidative stress, neuropathy and vasculopathy, aging sarcopenia, antidiabetic drugs, and insulin resistance as a denominator. The pathophysiological hallmark of diabetic muscle atrophy is the decreased muscle proteins synthesis and increased degradation. The muscle protein degradation is conveyed by 4 systems; ubiquitin-proteasome, lysosomal autophagy, caspase-3, and calpain systems, and is mostly mediated via the IL6/STAT, TNF&IL6/NFκB, myostatin/Smad2/3, and FOXO1/3 signaling pathways, while the protein synthesis inhibition is mediated via suppression of the IGF1-PI3K-Akt-mTOR, and SC-Gαi2-pathways. Moreover, the satellite cells and multilineage muscle mesenchymal progenitor cells differentiation plays a major role on the fate of the affected muscle cells by taking an adipogenic, fibrogenic, or connective tissue lineage. As a conclusion, in this article, the pathological features of diabetic sarcopenia are reviewed at gross level, while at a molecular level the normal protein turnover, signal transduction, and pathways involved in muscle atrophy are described. Finally, an integrated network describing the molecular partakers in diabetic sarcopenia is presented.
    Keywords:  Diabetic complications; Protein turnover; Sarcopenia; Skeletal muscles; T2DM
    DOI:  https://doi.org/10.1007/s00592-022-01883-2
  4. JMIR Res Protoc. 2022 Apr 11. 11(4): e33517
       BACKGROUND: During treatment for pediatric acute lymphoblastic leukemia (ALL), children receive high doses of dexamethasone for its apoptotic effect on leukemia cells; however, muscle atrophy is a well-known serious side effect. Muscle atrophy (loss of muscle mass) accompanied by a decreased muscle strength may lead to a generalized impaired skeletal muscle state called sarcopenia. Loss of muscle mass is also an indicator of physical frailty, which is defined as a state of increased vulnerability that is characterized by co-occurrence of low muscle mass, muscle weakness, fatigue, slow walking speed, and low physical activity. Both sarcopenia and physical frailty are related to an increased risk of infections, hospitalizations, and decreased survival in children with chronic diseases.
    OBJECTIVE: This study aims to (1) estimate the occurrence of sarcopenia and physical frailty in children during ALL maintenance therapy, (2) evaluate the effect of administering dexamethasone, and (3) explore determinants associated with these outcomes.
    METHODS: This prospective study is being pursued within the framework of the DexaDays-2 study: a randomized controlled trial on neurobehavioral side effects in pediatric patients with ALL. A total of 105 children (3-18 years) undergoing ALL maintenance treatment at the Princess Máxima Center for Pediatric Oncology are included in this study. Sarcopenia/frailty assessments are performed before and just after a 5-day dexamethasone course. A subset of 50 children participating in the DexaDays-2 trial because of severe dexamethasone-induced neurobehavioral problems were assessed at 3 additional timepoints. The sarcopenia/frailty assessment consists of bioimpedance analysis (skeletal muscle mass [SMM]), handheld dynamometry (handgrip strength), Pediatric Quality of Life Inventory Multidimensional Fatigue Scale (fatigue), Timed Up and Go Test (TUG; walking speed), and physical activity questionnaires. To evaluate potential change in sarcopenia/frailty components after a 5-day dexamethasone administration, a paired Student t test or Mann-Whitney U test will be used. Because of the presence of repeated measurements, generalized linear mixed models will be used to estimate the effect of dexamethasone on sarcopenia and frailty outcomes. Multivariable regression models will be estimated to investigate associations between the assessment scores and patient and treatment-related factors.
    RESULTS: Patient accrual started in 2018 and was finalized in spring 2021. From autumn 2021 onward final data analyses will be performed.
    CONCLUSIONS: This first study combining parameters of sarcopenia and physical frailty is of importance because these conditions can seriously complicate continuation of ALL therapy, independence in physical functioning, reaching motor milestones, and participating in daily life activities. The results will provide knowledge about these complications, the association between dexamethasone treatment and muscle loss and other components of frailty, and therefore insights into the severity of this side effect. By exploring potential determinants that may be associated with sarcopenia and physical frailty, we may be able to identify children at risk at an earlier stage and provide timely interventions.
    INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/33517.
    Keywords:  acute lymphoblastic leukemia; dexamethasone; fatigue; glucocorticoid-induced atrophy; muscle atrophy; physical activity; physical frailty; sarcopenia
    DOI:  https://doi.org/10.2196/33517
  5. Nutrients. 2022 Apr 06. pii: 1524. [Epub ahead of print]14(7):
      Sarcopenia has been recognized as a muscle disease, with adverse consequences on health. Updated recommendations, aimed at increasing awareness of sarcopenia and its accompanying risks, have been produced to urge the early detection and treatment of this disease. Recommended treatment is based on an individually tailored resistance exercise training program, the optimization of protein intake using high-quality protein sources (i.e., whey protein) in order to provide a high amount of essential amino acids-particularly leucine-and addressing vitamin D deficiency/insufficiency. The purpose of this review is to collate and describe all of the relevant efficacy studies carried out with a muscle-targeted oral nutritional supplementation (MT-ONS)-namely a whey-protein-based, leucine- and vitamin D-enriched formula aimed at optimizing their intake and satisfying their requirements-in different patient populations and clinical settings in order to determine if there is enough evidence to recommend prescription for the treatment of sarcopenia or its prevention in high-risk patient populations. Trials using a MT-ONS with or without a concomitant physical exercise program were systematically searched (up to June 2021), and those addressing relevant endpoints (muscle mass, physical performance and function) were critically reviewed. In total, 10 articles providing efficacy data from eight trials were identified and narratively reviewed. As far as older patients with sarcopenia are concerned, MT-ONS has been pertinently tested in six clinical trials (duration 4-52 weeks), mostly using a high-quality randomized controlled trial design and demonstrating efficacy in increasing the muscle mass and strength, as well as the physical performance versus iso-caloric placebo or standard practice. Consistent results have been observed in various clinical settings (community, rehabilitation centers, care homes), with or without adjunctive physical exercise programs. A positive effect on markers of inflammation has also been shown. A muscle-protein-sparing effect, with benefits on physical performance and function, has also been demonstrated in patients at risk of losing skeletal muscle mass (three trials), such as older patients undergoing weight loss or intensive rehabilitation programs associated with neurological disability (Parkinson's disease). MT-ONS has demonstrated not only a significant efficacy in clinical variables, but also a positive impact on healthcare resource consumption in the rehabilitation setting (length of stay and duration of rehabilitation). In summary, MT-ONS, alone or in association with an appropriate exercise program, is an effective therapy for older patients with sarcopenia and should be offered as a first-line treatment, not only to improve clinical outcomes but also to reduce healthcare resource consumption, particularly in patients admitted to a rehabilitation center.
    Keywords:  leucine; muscle mass; muscle protein synthesis; muscle strength; nutritional support; oral nutritional supplement (ONS); physical performance; sarcopenia; vitamin D; whey protein
    DOI:  https://doi.org/10.3390/nu14071524
  6. Cancers (Basel). 2022 Mar 23. pii: 1622. [Epub ahead of print]14(7):
      Aging is associated with chronic low-grade inflammation, cancer incidence and mortality. As inflammation contributes to cancer initiation and progression, one could hypothesize that age-associated chronic low-grade inflammation contributes to the increase in cancer incidence and/or mortality observed during aging. Here, we review the evidence supporting this hypothesis: (1) epidemiological associations between biomarkers of systemic inflammation and cancer incidence and mortality in older people, (2) therapeutic clues suggesting that targeting inflammation could reduce cancer incidence and mortality and (3) experimental evidence from animal models highlighting inflammation as a link between various mechanisms of aging and cancer initiation and progression. Despite a large body of literature linking aging, inflammation and cancer, convincing evidence for the clear implication of specific inflammatory pathways explaining cancer incidence or mortality during aging is still lacking. Further dedicated research is needed to fill these gaps in evidence and pave the way for the development of applications in clinical care.
    Keywords:  aging; biomarkers; cancer; cell senescence; inflammation; older persons
    DOI:  https://doi.org/10.3390/cancers14071622
  7. J Cachexia Sarcopenia Muscle. 2022 Apr 13.
       BACKGROUND: Efforts to enhance diagnostic measures for sarcopenia have led to an increased focus on the screening utility of blood-based biomarkers. In this regard, circulating neurofilament light chain (NfL) levels are a potent indicator of axonal damage and have been linked with several neurological disorders. However, despite the strong neurogenic contribution to skeletal muscle health, no studies have explored the relevance of NfL concentrations to sarcopenia. With that in mind, this study aimed to examine the association between plasma NfL concentration and sarcopenic domains.
    METHODS: Three hundred adults aged between 50 and 83 years participated to this study (male participants, n = 150; mean age: 64.2 ± 8.7 years and female participants, n = 150; mean age: 63.9 ± 8.3 years). Body composition was assessed using dual-energy X-ray absorptiometry, and a skeletal muscle index (SMI) was calculated. Muscle strength was assessed with hand dynamometry. Sarcopenia was classified using the European Working Group on Sarcopenia in Older People criteria. Plasma NfL concentration was determined using a highly sensitive, enzyme-linked immunosorbent assay.
    RESULTS: Neurofilament light chain levels were associated with grip strength and SMI (P = 0.005 and P = 0.045, respectively) and were significantly elevated in sarcopenic individuals, compared with non-sarcopenic participants (P < 0.001). Individuals with pre-sarcopenia (either low grip strength or low SMI) had significantly higher NfL levels, compared with healthy controls (P = 0.001 and P = 0.006, respectively). Male participants with either low grip strength or low SMI had significantly raised NfL levels (P = 0.006 and P = 0.002, respectively), while in female participants, NfL concentrations were significantly elevated only in those with low grip strength (P = 0.049). NfL concentration displayed acceptable diagnostic accuracy for sarcopenia (area under the curve = 0.726, P < 0.001).
    CONCLUSIONS: Our study clearly demonstrates the indicative pertinence of circulating NfL levels to sarcopenic domains, supporting its potential use as a biomarker of sarcopenia. More studies are needed, however, to further illuminate the diagnostic value of circulating NfL. Future research should explore whether NfL levels are more powerfully linked with muscle strength than mass and whether sex mediates the relevance of NfL concentrations to sarcopenic phenotypes.
    Keywords:  Biomarker; Diagnosis; Muscle strength; Muscle wasting; Sarcopenia; Screening
    DOI:  https://doi.org/10.1002/jcsm.12979
  8. Nutrients. 2022 Mar 26. pii: 1384. [Epub ahead of print]14(7):
      Sarcopenia, defined as the loss of muscle mass, strength, and function with aging, is a geriatric syndrome with important implications for patients and healthcare systems. Sarcopenia increases the risk of clinical decompensation when faced with physiological stressors and increases vulnerability, termed frailty. Sarcopenia develops due to inflammatory, hormonal, and myocellular changes in response to physiological and pathological aging, which promote progressive gains in fat mass and loss of lean mass and muscle strength. Progression of these pathophysiological changes can lead to sarcopenic obesity and physical frailty. These syndromes independently increase the risk of adverse patient outcomes including hospitalizations, long-term care placement, mortality, and decreased quality of life. This risk increases substantially when these syndromes co-exist. While there is evidence suggesting that the progression of sarcopenia, sarcopenic obesity, and frailty can be slowed or reversed, the adoption of broad-based screening or interventions has been slow to implement. Factors contributing to slow implementation include the lack of cost-effective, timely bedside diagnostics and interventions that target fundamental biological processes. This paper describes how clinical, radiographic, and biological data can be used to evaluate older adults with sarcopenia and sarcopenic obesity and to further the understanding of the mechanisms leading to declines in physical function and frailty.
    Keywords:  intramuscular fat; precision medicine; sarcopenia; sarcopenic obesity
    DOI:  https://doi.org/10.3390/nu14071384
  9. Int J Mol Sci. 2022 Mar 25. pii: 3609. [Epub ahead of print]23(7):
      Eukaryotic cells possess a plethora of regulatory mechanisms to maintain homeostasis and ensure proper biochemical functionality. Autophagy, a central, conserved self-consuming process of the cell, ensures the timely degradation of damaged cellular components. Several studies have demonstrated the important roles of autophagy activation in mitigating neurodegenerative diseases, especially Alzheimer's disease (AD). However, surprisingly, activation of macroautophagy has not shown clinical efficacy. Hence, alternative strategies are urgently needed for AD therapy. In recent years, selective autophagy has been reported to be involved in AD pathology, and different subtypes have been identified, such as aggrephagy, mitophagy, reticulophagy, lipophagy, pexophagy, nucleophagy, lysophagy and ribophagy. By clarifying the underlying mechanisms governing these various subtypes, we may come to understand how to control autophagy to treat AD. In this review, we summarize the latest findings concerning the role of selective autophagy in the pathogenesis of AD. The evidence overwhelmingly suggests that selective autophagy is an active mechanism in AD pathology, and that regulating selective autophagy would be an effective strategy for controlling this pathogenesis.
    Keywords:  Alzheimer’s disease; aggrephagy; lipophagy; lysophagy; mitophagy; nucleophagy; pexophagy; reticulophagy; ribophagy; selective autophagy
    DOI:  https://doi.org/10.3390/ijms23073609
  10. Syst Rev. 2022 Apr 13. 11(1): 64
       BACKGROUND: The evidence base for the role of dietary protein in maintaining good muscle health in older age is strong; however, the importance of protein source remains unclear. Plant proteins are generally of lower quality, with a less favourable amino acid profile and reduced bioavailability; therefore, it is possible that their therapeutic effects may be less than that of higher quality animal proteins. This review aims to evaluate the effectiveness of plant and animal protein interventions on muscle health outcomes.
    METHODS: A robust search strategy was developed to include terms relating to dietary protein with a focus on protein source, for example dairy, meat and soy. These were linked to terms related to muscle health outcomes, for example mass, strength, performance and sarcopenia. Five databases will be searched: MEDLINE, Scopus, Cochrane Central Register of Controlled Trials, Embase and Web of Science. Studies included will be randomised controlled trials with an adult population (≥ 18) living in the community or residential homes for older adults, and only English language articles will be included. Two independent reviewers will assess eligibility of individual studies. The internal validity of included studies will be assessed using Cochrane Risk of Bias 2.0 tool. Results will be synthesised in narrative format. Where applicable, standardised mean differences (SMD) (95% confidence interval [CI]) will be combined using a random-effects meta-analysis, and tests of homogeneity of variance will be calculated.
    DISCUSSION: Dietary guidelines recommend a change towards a plant-based diet that is more sustainable for health and for the environment; however, reduction of animal-based foods may impact protein quality in the diet. High-quality protein is important for maintenance of muscle health in older age; therefore, there is a need to understand whether replacement of animal protein with plant protein will make a significant difference in terms of muscle health outcomes. Findings from this review will be informative for sustainable nutritional guidelines, particularly for older adults and for those following vegan or vegetarian diets.
    SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD420201886582.
    Keywords:  Animal protein; Muscle mass; Muscle strength; Physical performance; Plant protein; Sarcopenia; Systematic review
    DOI:  https://doi.org/10.1186/s13643-022-01951-2
  11. Sensors (Basel). 2022 Apr 01. pii: 2721. [Epub ahead of print]22(7):
      Sarcopenia is a geriatric condition characterized by a loss of strength and muscle mass, with a high impact on health status, functional independence and quality of life in older adults. [d=TT, ]To reduce the effects of the disease, just the diagnostic is not enough, it is necessary more than recognition.To reduce the effects of the disease, it is important to recognize the level and progression of sarcopenia early. Surface electromyography is becoming increasingly relevant for the prevention and diagnosis of sarcopenia, also due to a wide diffusion of smart and minimally invasive wearable devices suitable for electromyographic monitoring. The purpose of this work is manifold. The first aim is the design and implementation of a hardware/software platform. It is based on the elaboration of surface electromyographic signals extracted from the Gastrocnemius Lateralis and Tibialis Anterior muscles, useful to analyze the strength of the muscles with the purpose of distinguishing three different "confidence" levels of sarcopenia. The second aim is to compare the efficiency of state of the art supervised classifiers in the evaluation of sarcopenia. The experimentation stage was performed on an "augmented" dataset starting from data acquired from 32 patients. The latter were distributed in an unbalanced manner on 3 "confidence" levels of sarcopenia. The obtained results in terms of classification accuracy demonstrated the ability of the proposed platform to distinguish different sarcopenia "confidence" levels, with highest accuracy value given by Support Vector Machine classifier, outperforming the other classifiers by an average of 7.7%.
    Keywords:  ageing; machine learning; sarcopenia; surface EMG
    DOI:  https://doi.org/10.3390/s22072721
  12. Int J Environ Res Public Health. 2022 Apr 04. pii: 4317. [Epub ahead of print]19(7):
      The role of physical activity in improving overall aspects of health regardless of age is well documented. Due to the coronavirus disease 2019 outbreak, preventive measures to limit airborne infection have been introduced, with people, especially older adults, advised to stay at home, thus increasing sedentary lifestyle and the risk of chronic diseases. As one of the few possible ways to stay active is home-based training, this review aims to provide evidence on alternative and feasible home-based activity programs as a tool to improve the fitness level in older adults, especially when preventive measures are needed to ensure isolation and limit interpersonal contacts. During quarantine, older adults, especially those with chronic diseases, are recommended to regularly exercise. Combined balance and muscle-strengthening training has proven to be particularly useful in limiting falls and mobility limitations. In addition, the use of virtual reality systems seems to be a potential strategy in remaining physically active, reducing physical inactivity time and significantly increasing the compliance of the older adults with physical activity programs. In conclusion, home-based programs induce improvements in physical functions in general and quality of life in older people with or without co-morbidities, and it can be considered in the future as one of the feasible and economic ways to increase physical well-being. This may be of unique importance in the setting of coronavirus disease 2019 enforced limitations in out-of-home activity.
    Keywords:  SARS-CoV-2; exercise; older adults; well-being
    DOI:  https://doi.org/10.3390/ijerph19074317