Dis Model Mech. 2021 Jun 23. pii: dmm.048997. [Epub ahead of print]
The vacuolar type H+-ATPase (V-ATPase) is a ubiquitous membrane-bound, multi-subunit proton pump that regulates pH of cellular compartments. V-ATPase activity is known to modulate several cellular processes, but cell type-specific V-ATPase functions remain poorly understood. Patients with mutations in specific V-ATPase subunits can develop sensorineural deafness, but underlying mechanisms are unclear. Here, we show that V-ATPase mutations disrupt formation of zebrafish neuromasts, which serve as a model system to investigate the underpinnings of hearing loss. Neuromasts consist of support cells surrounding mechanosensory hair cells that function similarly to hair cells in the mammalian inner ear. In V-ATPase mutant zebrafish embryos, neuromasts are small, malformed, and contain pyknotic nuclei that denote dying cells. Using molecular markers and live imaging, we find that loss of V-ATPase induces hair cells, but not neighboring support cells, to undergo caspase-independent necrosis-like cell death. This is the first demonstration that loss of V-ATPase can lead to necrosis-like cell death in a specific cell type in vivo. Mechanistically, loss of V-ATPase reduces mitochondrial membrane potential in hair cells, which has previously been associated with necrotic cell death. Modulating the mitochondrial permeability transition pore, which regulates mitochondrial membrane potential, improves hair cell survival. These results have implications for understanding causes of sensorineural deafness, and more broadly, reveal functions for V-ATPase in regulating mitochondrial function and promoting survival of a specific cell type in vivo.
Keywords: Mitochondrial membrane potential; Necrosis-like cell death; Neuromast hair cell; Vacuolar type H+-ATPase (V-ATPase); Zebrafish