bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2022‒04‒10
fifty-six papers selected by
Viktor Korolchuk, Newcastle University



  1. Front Cell Dev Biol. 2022 ;10 837337
      Macroautophagy (henceforth autophagy) an evolutionary conserved intracellular pathway, involves lysosomal degradation of damaged and superfluous cytosolic contents to maintain cellular homeostasis. While autophagy was initially perceived as a bulk degradation process, a surfeit of studies in the last 2 decades has revealed that it can also be selective in choosing intracellular constituents for degradation. In addition to the core autophagy machinery, these selective autophagy pathways comprise of distinct molecular players that are involved in the capture of specific cargoes. The diverse organelles that are degraded by selective autophagy pathways are endoplasmic reticulum (ERphagy), lysosomes (lysophagy), mitochondria (mitophagy), Golgi apparatus (Golgiphagy), peroxisomes (pexophagy) and nucleus (nucleophagy). Among these, the main focus of this review is on the selective autophagic pathway involved in mitochondrial turnover called mitophagy. The mitophagy pathway encompasses diverse mechanisms involving a complex interplay of a multitude of proteins that confers the selective recognition of damaged mitochondria and their targeting to degradation via autophagy. Mitophagy is triggered by cues that signal the mitochondrial damage such as disturbances in mitochondrial fission-fusion dynamics, mitochondrial membrane depolarisation, enhanced ROS production, mtDNA damage as well as developmental cues such as erythrocyte maturation, removal of paternal mitochondria, cardiomyocyte maturation and somatic cell reprogramming. As research on the mechanistic aspects of this complex pathway is progressing, emerging roles of new players such as the NIPSNAP proteins, Miro proteins and ER-Mitochondria contact sites (ERMES) are being explored. Although diverse aspects of this pathway are being investigated in depth, several outstanding questions such as distinct molecular players of basal mitophagy, selective dominance of a particular mitophagy adapter protein over the other in a given physiological condition, molecular mechanism of how specific disease mutations affect this pathway remain to be addressed. In this review, we aim to give an overview with special emphasis on molecular and signalling pathways of mitophagy and its dysregulation in neurodegenerative disorders.
    Keywords:  mitochondrial dynamics; mitochondrial dysfunction; mitophagy; neurodegenaration; phosphorylation; ubiquitination
    DOI:  https://doi.org/10.3389/fcell.2022.837337
  2. Autophagy. 2022 Apr 07. 1-15
      The mammalian Atg18 ortholog WIPI2 is a key regulator of LC3 lipidation to promote autophagosome biogenesis during nonselective macroautophagy, while its functions in selective autophagy such as mitophagy remain largely unexplored. In this study, we explored the role of WIPI2 in PINK1-PRKN/parkin-mediated mitophagy. First, we found that WIPI2 is recruited to damaged mitochondria upon mitophagy induction. Second, loss of WIPI2 impedes mitochondrial damaging agents-induced mitophagy. Third, at molecular level, WIPI2 binds to and promotes AAA-ATPase VCP/p97 (valosin containing protein) to damaged mitochondria; and WIPI2 depletion blunts the recruitment of VCP to damaged mitochondria, leading to reduction in degradation of outer mitochondrial membrane (OMM) proteins and mitophagy. Finally, WIPI2 is implicated in cell fate decision as cells deficient in WIPI2 are largely resistant to cell death induced by mitochondrial damage. In summary, our study reveals a critical regulatory role of WIPI2 in mitochondrial recruitment of VCP to promote OMM protein degradation and eventual mitophagy.Abbreviations: ATG, autophagy related; CALCOCO2/NDP52, calcium binding and coiled-coil domain 2; CCCP, carbonyl cyanide chlorophenylhydrazone; CYCS, cytochrome c, somatic; HSPD1/HSP60, heat shock protein family D (Hsp60) member 1; IMM, inner mitochondrial membrane; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; NPLOC4, NPL4 homolog, ubiquitin recognition factor; OMM, outer mitochondrial membrane; OPTN, optineurin; PtdIns3P, phosphatidylinositol-3-phosphate; PINK1, PTEN induced kinase 1; PRKN/Parkin, parkin RBR E3 ubiquitin protein ligase; UBXN6/UBXD1, UBX domain protein 6; UFD1, ubiquitin recognition factor in ER associated degradation 1; VCP/p97, valosin containing protein; WIPI2, WD repeat domain, phosphoinositide interacting 2.
    Keywords:  Autophagy; PINK1; PRKN; VCP; WIPI2; cell death; mitophagy
    DOI:  https://doi.org/10.1080/15548627.2022.2052461
  3. Autophagy. 2022 Apr 05. 1-3
      Protein aggregation is related to many human diseases. Selective macroautophagy/autophagy is the major way to clear protein aggregates in eukaryotic cells. While multiple types of autophagy receptors have been reported to mediate autophagic clearance of protein condensates with liquidity, it has been unclear if and how solid aggregates could be degraded by autophagy. Our recent work identifies the chaperonin subunit CCT2 as a new type of aggrephagy receptor specifically facilitating the autophagic clearance of solid protein aggregates, and indicates that multiple aggrephagy pathways act in parallel to remove different types of protein aggregates. In addition, this work reveals a functional switch of the chaperonin system by showing that CCT2 acts both as a chaperonin component and an autophagy-receptor via complex and monomer formation.
    Keywords:  Aggrephagy; CCT2; TRiC; autophagosome; autophagy; chaperone; chaperonin; phase separation; protein aggregation
    DOI:  https://doi.org/10.1080/15548627.2022.2052581
  4. Oxid Med Cell Longev. 2022 ;2022 2998132
      We investigated the ability of the ascorbic acid (AA) and menadione (MD) combination, the well-known reactive oxidative species- (ROS-) generating system, to induce autophagy in human U251 glioblastoma cells. A combination of AA and MD (AA+MD), in contrast to single treatments, induced necrosis-like cell death mediated by mitochondrial membrane depolarization and extremely high oxidative stress. AA+MD, and to a lesser extent MD alone, prompted the appearance of autophagy markers such as autophagic vacuoles, autophagosome-associated LC3-II protein, degradation of p62, and increased expression of beclin-1. While both MD and AA+MD increased phosphorylation of AMP-activated protein kinase (AMPK), the well-known autophagy promotor, only the combined treatment affected its downstream targets, mechanistic target of rapamycin complex 1 (mTORC1), Unc 51-like kinase 1 (ULK1), and increased the expression of several autophagy-related genes. Antioxidant N-acetyl cysteine reduced both MD- and AA+MD-induced autophagy, as well as changes in AMPK/mTORC1/ULK1 activity and cell death triggered by the drug combination. Pharmacological and genetic autophagy silencing abolished the toxicity of AA+MD, while autophagy upregulation enhanced the toxicity of both AA+MD and MD. Therefore, by upregulating oxidative stress, inhibiting mTORC1, and activating ULK1, AA converts MD-induced AMPK-dependent autophagy from nontoxic to cytotoxic. These results suggest that AA+MD or MD treatment in combination with autophagy inducers could be further investigated as a novel approach for glioblastoma therapy.
    DOI:  https://doi.org/10.1155/2022/2998132
  5. Cell. 2022 Mar 27. pii: S0092-8674(22)00265-3. [Epub ahead of print]
      Protein aggregation is a hallmark of multiple human pathologies. Autophagy selectively degrades protein aggregates via aggrephagy. How selectivity is achieved has been elusive. Here, we identify the chaperonin subunit CCT2 as an autophagy receptor regulating the clearance of aggregation-prone proteins in the cell and the mouse brain. CCT2 associates with aggregation-prone proteins independent of cargo ubiquitination and interacts with autophagosome marker ATG8s through a non-classical VLIR motif. In addition, CCT2 regulates aggrephagy independently of the ubiquitin-binding receptors (P62, NBR1, and TAX1BP1) or chaperone-mediated autophagy. Unlike P62, NBR1, and TAX1BP1, which facilitate the clearance of protein condensates with liquidity, CCT2 specifically promotes the autophagic degradation of protein aggregates with little liquidity (solid aggregates). Furthermore, aggregation-prone protein accumulation induces the functional switch of CCT2 from a chaperone subunit to an autophagy receptor by promoting CCT2 monomer formation, which exposes the VLIR to ATG8s interaction and, therefore, enables the autophagic function.
    Keywords:  CCT2; FUS; GABARAP; Huntington’s disease; LC3; NBR1; P62; SOD1; TAX1BP1; TRiC; aggrephagy; autophagy; chaperone; chaperonin; huntingtin; neurodegeneration; phase separation; protein aggregates; protein aggregation; tau
    DOI:  https://doi.org/10.1016/j.cell.2022.03.005
  6. J Mol Med (Berl). 2022 Apr 07.
      Mitochondria dysfunction is involved in the pathomechanism of many illnesses including Parkinson's disease. PINK1, which is mutated in some cases of familial Parkinsonism, is a key component in the degradation of damaged mitochondria by mitophagy. The accumulation of PINK1 on the mitochondrial outer membrane (MOM) of compromised organelles is crucial for the induction of mitophagy, but the molecular mechanism of this process is still unresolved. Here, we investigate the association of PINK1 with the TOM complex. We demonstrate that PINK1 heavily relies on the import receptor TOM70 for its association with mitochondria and directly interacts with this receptor. The structural protein TOM7 appears to play only a moderate role in PINK1 association with the TOM complex, probably due to its role in stabilizing this complex. PINK1 requires the TOM40 pore lumen for its stable interaction with the TOM complex and apparently remains there during its further association with the MOM. Overall, this study provides new insights on the role of the individual TOM subunits in the association of PINK1 with the MOM of depolarized mitochondria. KEY MESSAGES: TOM70 is the main receptor for the import of PINK1 into mitochondria. TOM20 plays only a minor role in PINK1 recognition at the organellar outer membrane. PINK1 association with the TOM complex is reduced upon knock-down of TOM7. The lumen of the TOM pore is crucial for PINK1 association with the outer membrane. TcPINK1 blocks the TOM pore in depolarized mitochondria.
    Keywords:  Mitochondria; Outer membrane; PINK1; Parkinson’s disease; TOM complex
    DOI:  https://doi.org/10.1007/s00109-022-02191-6
  7. Sci Adv. 2022 Apr 08. 8(14): eabk0942
      Lysosomes contribute to cellular homeostasis via processes including macromolecule degradation, nutrient sensing, and autophagy. Defective proteins related to lysosomal macromolecule catabolism are known to cause a range of lysosomal storage diseases; however, it is unclear whether mutations in proteins involved in homeostatic nutrient sensing mechanisms cause syndromic sensory disease. Here, we show that SLC7A14, a transporter protein mediating lysosomal uptake of cationic amino acids, is evolutionarily conserved in vertebrate mechanosensory hair cells and highly expressed in lysosomes of mammalian cochlear inner hair cells (IHCs) and retinal photoreceptors. Autosomal recessive mutation of SLC7A14 caused loss of IHCs and photoreceptors, leading to presynaptic auditory neuropathy and retinitis pigmentosa in mice and humans. Loss-of-function mutation altered protein trafficking and increased basal autophagy, leading to progressive cell degeneration. This study implicates autophagy-lysosomal dysfunction in syndromic hearing and vision loss in mice and humans.
    DOI:  https://doi.org/10.1126/sciadv.abk0942
  8. Front Pharmacol. 2022 ;13 844756
      Autophagy is a highly conserved lysosomal degradation system that involves the creation of autophagosomes, which eventually fuse with lysosomes and breakdown misfolded proteins and damaged organelles with their enzymes. Autophagy is widely known for its function in cellular homeostasis under physiological and pathological settings. Defects in autophagy have been implicated in the pathophysiology of a variety of human diseases. The new line of evidence suggests that autophagy is inextricably linked to skin disorders. This review summarizes the principles behind autophagy and highlights current findings of autophagy's role in skin disorders and strategies for therapeutic modulation.
    Keywords:  atopic dermatitis; autophagy; inflammation; psoriasis; skin cancer
    DOI:  https://doi.org/10.3389/fphar.2022.844756
  9. Autophagy. 2022 Apr 05.
      High levels of reactive oxygen species (ROS) result in oxidative stress, which damages cells and leads to the development of many diseases. Macroautophagy/autophagy plays an important role in protecting cells from diverse stress stimuli including oxidative stress. However, the molecular mechanisms of autophagy activation in response to oxidative stress remain largely unclear. In this study, we showed that TRAF6 mediates oxidative stress-induced ATG9A ubiquitination at two C-terminal lysine residues (K581 and K838). ATG9A ubiquitination promotes its association with BECN1, BECN1-PIK3C3/VPS34-UVRAG complex assembly and PIK3C3/VPS34 activation, thereby activating autophagy and endocytic trafficking. We also identified TNFAIP3/A20 as a negative regulator of oxidative-induced autophagy by counteracting TRAF6-mediated ATG9A ubiquitination. Moreover, ATG9A depletion attenuates LPS-induced autophagy and causes aberrant TLR4 signaling and inflammatory responses. Our findings revealed a critical role of ATG9A ubiquitination in oxidative-induced autophagy, endocytic trafficking and innate immunity.
    Keywords:  ATG9A; BECN1; PIK3C3/VPS34; TNFAIP3/A20; TRAF6; UVRAG; autophagy; endocytic trafficking; oxidative stress; ubiquitination
    DOI:  https://doi.org/10.1080/15548627.2022.2061756
  10. Prog Retin Eye Res. 2022 Apr 01. pii: S1350-9462(22)00024-6. [Epub ahead of print] 101064
      During the last few years, the autophagy lysosomal system is emerging as a central cellular pathway with roles in survival, acting as a housekeeper and stress response mechanism. Studies by our and other labs suggest that autophagy might play an essential role in maintaining aqueous humor outflow homeostasis, and that malfunction of autophagy in outflow pathway cells might predispose to ocular hypertension and glaucoma pathogenesis. In this review, we will collect the current knowledge and discuss the molecular mechanisms by which autophagy does or might regulate normal outflow pathway tissue function, and its response to different types of stressors (oxidative stress and mechanical stress). We will also discuss novel roles of autophagy and lysosomal enzymes in modulation of TGFβ signaling and ECM remodeling, and the link between dysregulated autophagy and cellular senescence. We will examine what we have learnt, using pre-clinical animal models about how dysregulated autophagy can contribute to disease and apply that to the current status of autophagy in human glaucoma. Finally, we will consider and discuss the challenges and the potential of autophagy as a therapeutic target for the treatment of ocular hypertension and glaucoma.
    Keywords:  Autophagy; Cathepsins; ECM; Glaucoma; Lysosomes; Mechanical stress; Primary cilia; Trabecular meshwork
    DOI:  https://doi.org/10.1016/j.preteyeres.2022.101064
  11. Autophagy. 2022 Apr 07. 1-19
      MAP1LC3/LC3 (microtubule associated protein 1 light chain 3) is widely used as marker of autophagic compartments at different stages of maturation. Electron microscopy (EM) combined with immunolabeling is the only technique that can reveal the ultrastructural identity of LC3-labeled compartments. However, immuno-EM of endogenous LC3 proteins has proven difficult. Here, we test a panel of commercially available antibodies and apply different labeling conditions to present an optimized procedure for LC3 immuno-EM. Using ultrathin cryosections and protein A-colloidal gold or gold enhancement labeling, we localize endogenous LC3 in starved cells or tissues in the presence or absence of the proton pump inhibitor bafilomycin A1. We localize LC3 to early and late stage autophagic compartments that can be classified by their morphology. By on-section correlative light-electron microscopy (CLEM) we show that comparable fluorescent LC3-positive puncta can represent different autophagic intermediates. We also show that our approach is sufficiently robust to label endogenous LC3 simultaneously with other lysosomal and autophagy markers, LAMP1 or SQSTM1/p62, and can be used for quantitative approaches. Thus, we demonstrate that bafilomycin A1 treatment from 2.5 up to 24 h does not inhibit fusion between autophagosomes and lysosomes, but leads to the accumulation of LC3-positive material inside autolysosomes. Together, this is the first study presenting an extensive overview of endogenous LC3 localization at ultrastructural resolution without the need for cell permeabilization and using a commercially available antibody. This provides researchers with a tool to study canonical and non-canonical roles of LC3 in native conditions.
    Keywords:  Autophagy; CLEM; LC3; bafilomycin A1; immuno-electron microscopy; ultrathin cryosections
    DOI:  https://doi.org/10.1080/15548627.2022.2056864
  12. Semin Cell Dev Biol. 2022 Mar 30. pii: S1084-9521(22)00095-7. [Epub ahead of print]
      Mitochondrial remodeling is crucial to meet the bioenergetic demand to support muscle contractile activity during daily tasks and muscle regeneration following injury. A set of mitochondrial quality control (MQC) processes, including mitochondrial biogenesis, dynamics, and mitophagy, are in place to maintain a well-functioning mitochondrial network and support muscle regeneration. Alterations in any of these pathways compromises mitochondrial quality and may potentially lead to impaired myogenesis, defective muscle regeneration, and ultimately loss of muscle function. Among MQC processes, mitophagy has gained special attention for its implication in the clearance of dysfunctional mitochondria via crosstalk with the endo-lysosomal system, a major cell degradative route. Along this pathway, additional opportunities for mitochondrial disposal have been identified that may also signal at the systemic level. This communication occurs via inclusion of mitochondrial components within membranous shuttles named mitochondrial-derived vesicles (MDVs). Here, we discuss MDV generation and release as a mitophagy-complementing route for the maintenance of mitochondrial homeostasis in skeletal myocytes. We also illustrate the possible role of muscle-derived MDVs in immune signaling during muscle remodeling and adaptation.
    Keywords:  Extracellular vesicles; Mitochondrial DNA damage; Mitochondrial biogenesis; Mitochondrial quality control; Mitophagy; Skeletal muscle
    DOI:  https://doi.org/10.1016/j.semcdb.2022.03.023
  13. Neuroscience. 2022 Mar 30. pii: S0306-4522(22)00158-0. [Epub ahead of print]
      Our previous studies revealed that miR-34a suppresses autophagy in the ageing cochlea, which correlates with cochlear hair cell loss and age-related hearing loss (AHL). However, the mechanisms underlying miR-34a regulation of autophagy in the cochlea remain unclear. Here, we show that nuclear translocation of transcription factor EB (TFEB), a master regulator of autophagy, was regulated by miR-34a in HEI-OC1 cells. Moreover, ATG9A, one of the main targets of miR-34a, was shown to interact with TFEB and thus promote its nuclear translocation in HEI-OC1 cells. Rapamycin rescued the inhibition of TFEB nuclear translocation induced by miR-34a/ATG9A activation, restored autophagic flux and consequently prevented HEI-OC1 cell death. Long-term supplementation with rapamycin attenuated outer hair cells (OHCs) and inner hair cell synaptic ribbons, and delayed AHL in C57BL/6 mice. Most importantly, rapamycin partially restored TFEB's nuclear localization and autophagic flux in OHCs of the ageing cochlea. These findings open new avenues for protection against AHL through miR-34a/ATG9a/TFEB modulation of autophagy.
    Keywords:  ATG9A; TFEB; age-related hearing loss; autophagy; mir-34a; rapamycin
    DOI:  https://doi.org/10.1016/j.neuroscience.2022.03.033
  14. Autophagy. 2022 Apr 03. 1-14
      Mutations in the ubiquitin ligase PRKN (parkin RBR E3 ubiquitin protein ligase) are associated with Parkinson disease and defective mitophagy. Conceptually, PRKN-dependent mitophagy is classified into two phases: 1. PRKN recruits to and ubiquitinates mitochondrial proteins; 2. formation of phagophore membrane, sequestering mitochondria for degradation. Recently, endosomal machineries are reported to contribute to the later stage for membrane assembly. We reported a role for endosomes in the events upstream of phase 1. We demonstrate that the endosomal ubiquitin ligase RFFL (ring finger and FYVE like domain containing E3 ubiquitin protein ligase) associated with damaged mitochondria, and this association preceded that of PRKN. RFFL interacted with PRKN, and stable recruitment of PRKN to damaged mitochondria was substantially reduced in RFFL KO cells. Our study unraveled a novel role of endosomes in modulating upstream pathways of PRKN-dependent mitophagy initiation.Abbreviations CCCP: carbonyl cyanide 3-chlorophenylhydrazone; DMSO: dimethyl sulfoxide; EGFP: enhanced green fluorescence protein; KO: knockout; PRKN: parkin RBR E3 ubiquitin protein ligase; RFFL: ring finger and FYVE like domain containing E3 ubiquitin protein ligase; UQCRC1: ubiquinol-cytochrome c reductase core protein 1; WT: wild-type.
    Keywords:  Endosomes; PRKN; RFFL; mitophagy; ubiquitin ligases
    DOI:  https://doi.org/10.1080/15548627.2022.2052460
  15. Autophagy. 2022 Apr 05. 1-2
      Although the involvement of macroautophagy/autophagy in hepatitis B virus (HBV) infection has become clearer recently, whether selective autophagy plays an important role in suppressing HBV remains uncertain. We recently found that LGALS9 (galectin 9) is an interferon (IFN)-inducible protein involved in the suppression of HBV replication. Expression of LGALS9 in HBV-infected cells causes the formation of cytoplasmic puncta that degrade the HBV core protein (HBc) in conjunction with RSAD2/viperin, another IFN-inducible protein. LGALS9 binds to HBc via RSAD2 and promotes the autoubiquitination of RNF13 (ring finger protein 13) to recruit SQSTM1/p62, resulting in the formation of LC3-positive autophagosomes that degrade HBc. Both LGALS9 and RSAD2 are encoded by IFN-stimulated genes that act synergistically to induce HBc proteolysis in HBV-infected hepatocytes in an IFN-dependent manner. These results reveal a crosstalk mechanism between the innate immune system and selective autophagy during viral infection.
    Keywords:  BRET; hepatitis B virus; interferon; selective autophagy; xenophagy
    DOI:  https://doi.org/10.1080/15548627.2022.2059747
  16. Basic Res Cardiol. 2022 Apr 07. 117(1): 20
      Accumulating evidence suggests that autophagy dysfunction plays a critical role in myocardial ischemia/reperfusion (I/R) injury. However, the underling mechanism of malfunctional autophagy in the cardiomyocytes subjected to I/R has not been well defined. As a result, there is no effective therapeutic option by targeting autophagy to prevent myocardial I/R injury. Here, we used both an in vitro and an in vivo I/R model to monitor autophagic flux in the cardiomyocytes, by exposing neonatal rat ventricular myocytes to hypoxia/reoxygenation and by subjecting mice to I/R, respectively. We observed that the autophagic flux in the cardiomyocytes subjected to I/R was blocked in both in vitro and in vivo models. Down-regulating a lysosomal cationic channel, TRPML1, markedly restored the blocked myocardial autophagic flux induced by I/R, demonstrating that TRPML1 directly contributes to the blocked autophagic flux in the cardiomyocytes subjected to I/R. Mechanistically, TRPML1 is activated secondary to ROS elevation following ischemia/reperfusion, which in turn induces the release of lysosomal zinc into the cytosol and ultimately blocks the autophagic flux in cardiomyocytes, presumably by disrupting the fusion between autophagosomes and lysosomes. As a result, the inhibited myocardial autophagic flux induced by TRPML1 disrupted mitochondria turnover and resulted in mass accumulation of damaged mitochondria and further ROS release, which directly led to cardiomyocyte death. More importantly, pharmacological and genetic inhibition of TRPML1 channels greatly reduced infarct size and rescued heart function in mice subjected to I/R in vivo by restoring impaired myocardial autophagy. In summary, our study demonstrates that secondary to ROS elevation, activation of TRPML1 results in autophagy inhibition in the cardiomyocytes subjected to I/R, which directly leads to cardiomyocyte death by disrupting mitochondria turnover. Therefore, targeting TRPML1 represents a novel therapeutic strategy to protect against myocardial I/R injury.
    Keywords:  Autophagy inhibition; Cardiomyocyte death; Ischemia/reperfusion injury; Mitochondria turnover
    DOI:  https://doi.org/10.1007/s00395-022-00930-x
  17. Front Cell Infect Microbiol. 2022 ;12 834321
      Macrophages remove bacteria from the extracellular milieu via phagocytosis. While most of the engulfed bacteria are degraded in the antimicrobial environment of the phagolysosome, several bacterial pathogens have evolved virulence factors, which evade degradation or allow escape into the cytosol. To counter this situation, macrophages activate LC3-associated phagocytosis (LAP), a highly bactericidal non-canonical autophagy pathway, which destroys the bacterial pathogens in so called LAPosomes. Moreover, macrophages can also target intracellular bacteria by pore-forming toxin-induced non-canonical autophagy (PINCA), a recently described non-canonical autophagy pathway, which is activated by phagosomal damage induced by bacteria-derived pore-forming toxins. Similar to LAP, PINCA involves LC3 recruitment to the bacteria-containing phagosome independently of the ULK complex, but in contrast to LAP, this process does not require ROS production by Nox2. As last resort of autophagic targeting, macrophages activate xenophagy, a selective form of macroautophagy, to recapture bacteria, which evaded successful targeting by LAP or PINCA through rupture of the phagosome. However, xenophagy can also be hijacked by bacterial pathogens for their benefit or can be completely inhibited resulting in intracellular growth of the bacterial pathogen. In this perspective, we discuss the molecular differences and similarities between LAP, PINCA and xenophagy in macrophages during bacterial infections.
    Keywords:  LC3-associated phagocytosis; PINCA; ULK complex; macroautophagy; macrophages; non-canonical autophagy; pore-forming toxins; xenophagy
    DOI:  https://doi.org/10.3389/fcimb.2022.834321
  18. Pathol Oncol Res. 2022 ;28 1610231
      Activation of the mTOR pathway has been observed in osteosarcoma, however the inhibition of mammalian target of rapamycin (mTOR) complex 1 has had limited results in osteosarcoma treatment. Certain metabolic pathways can be altered by mTOR activation, which can affect survival. Our aim was to characterize the mTOR profile and certain metabolic alterations in pediatric osteosarcoma to determine the interactions between the mTOR pathway and metabolic pathways. We performed immunohistochemistry on 28 samples to analyze the expression of mTOR complexes such as phospho-mTOR (pmTOR), phosphorylated ribosomal S6 (pS6), and rapamycin-insensitive companion of mTOR (rictor). To characterize metabolic pathway markers, we investigated the expression of phosphofructokinase (PFK), lactate dehydrogenase-A (LDHA), β-F1-ATPase (ATPB), glucose-6-phosphate dehydrogenase (G6PDH), glutaminase (GLS), fatty acid synthetase (FASN), and carnitin-O-palmitoyltransferase-1 (CPT1A). In total, 61% of the cases showed low mTOR activity, but higher pmTOR expression was associated with poor histological response to chemotherapy and osteoblastic subtype. Rictor expression was higher in metastatic disease and older age at the time of diagnosis. Our findings suggest the importance of the Warburg-effect, pentose-phosphate pathway, glutamine demand, and fatty-acid beta oxidation in osteosarcoma cells. mTOR activation is linked to several metabolic pathways. We suggest performing a detailed investigation of the mTOR profile before considering mTORC1 inhibitor therapy. Our findings highlight that targeting certain metabolic pathways could be an alternative therapeutic approach.
    Keywords:  mTOR; metabolic; metabolic adaptation; osteosarcoma; pathways; pediatric
    DOI:  https://doi.org/10.3389/pore.2022.1610231
  19. Nat Commun. 2022 Apr 04. 13(1): 1783
      Activation of the cannabinoid-1 receptor (CB1R) and the mammalian target of rapamycin complex 1 (mTORC1) in the renal proximal tubular cells (RPTCs) contributes to the development of diabetic kidney disease (DKD). However, the CB1R/mTORC1 signaling axis in the kidney has not been described yet. We show here that hyperglycemia-induced endocannabinoid/CB1R stimulation increased mTORC1 activity, enhancing the transcription of the facilitative glucose transporter 2 (GLUT2) and leading to the development of DKD in mice; this effect was ameliorated by specific RPTCs ablation of GLUT2. Conversely, CB1R maintained the normal activity of mTORC1 by preventing the cellular excess of amino acids during normoglycemia. Our findings highlight a novel molecular mechanism by which the activation of mTORC1 in RPTCs is tightly controlled by CB1R, either by enhancing the reabsorption of glucose and inducing kidney dysfunction in diabetes or by preventing amino acid uptake and maintaining normal kidney function in healthy conditions.
    DOI:  https://doi.org/10.1038/s41467-022-29124-8
  20. Curr Med Sci. 2022 Apr 07.
      Ischemic stroke is a serious cerebrovascular disease with high morbidity and mortality. As a result of ischemia-reperfusion, a cascade of pathophysiological responses is triggered by the imbalance in metabolic supply and demand, resulting in cell loss. These cellular injuries follow various molecular mechanisms solely or in combination with this disorder. Mitochondria play a driving role in the pathophysiological processes of ischemic stroke. Once ischemic stroke occurs, damaged cells would respond to such stress through mitophagy. Mitophagy is known as a conservatively selective autophagy, contributing to the removal of excessive protein aggregates and damaged intracellular components, as well as aging mitochondria. Moderate mitophagy may exert neuroprotection against stroke. Several pathways associated with the mitochondrial network collectively contribute to recovering the homeostasis of the neurovascular unit. However, excessive mitophagy would also promote ischemia-reperfusion injury. Therefore, mitophagy is a double-edged sword, which suggests that maximizing the benefits of mitophagy is one of the direction of future efforts. This review emphasized the role of mitophagy in ischemic stroke, and highlighted the crosstalk between mitophagy and apoptosis/necroptosis.
    Keywords:  apoptosis; clinical application; crosstalk; ischemic stroke; mitophagy; necroptosis
    DOI:  https://doi.org/10.1007/s11596-022-2579-3
  21. Front Pharmacol. 2022 ;13 822669
      Following an acute myocardial infarction (AMI), thrombolysis, coronary artery bypass grafting and primary percutaneous coronary intervention (PPCI) are the best interventions to restore reperfusion and relieve the ischemic myocardium, however, the myocardial ischemia-reperfusion injury (MIRI) largely offsets the benefits of revascularization in patients. Studies have demonstrated that autophagy is one of the important mechanisms mediating the occurrence of the MIRI, while non-coding RNAs are the main regulatory factors of autophagy, which plays an important role in the autophagy-related mTOR signaling pathways and the process of autophagosome formation Therefore, non-coding RNAs may be used as novel clinical diagnostic markers and therapeutic targets in the diagnosis and treatment of the MIRI. In this review, we not only describe the effect of non-coding RNA regulation of autophagy on MIRI outcome, but also zero in on the regulation of non-coding RNA on autophagy-related mTOR signaling pathways and mitophagy. Besides, we focus on how non-coding RNAs affect the outcome of MIRI by regulating autophagy induction, formation and extension of autophagic vesicles, and the fusion of autophagosome and lysosome. In addition, we summarize all non-coding RNAs reported in MIRI that can be served as possible druggable targets, hoping to provide a new idea for the prediction and treatment of MIRI.
    Keywords:  autophagy; mTOR; mitophagy; myocardial ischemia-reperfusion injury; non-coding RNA
    DOI:  https://doi.org/10.3389/fphar.2022.822669
  22. Biochemistry. 2022 Apr 05.
      Degradation of autophagosomal cargo requires the tethering and fusion of autophagosomes with lysosomes that is mediated by the scaffolding protein autophagy related 14 (ATG14). Here, we report that phosphatidylinositol 4-kinase 2A (PI4K2A) generates a pool of phosphatidylinositol 4-phosphate (PI4P) that facilitates the recruitment of ATG14 to mature autophagosomes. We also show that PI4K2A binds to ATG14, suggesting that PI4P may be synthesized in situ in the vicinity of ATG14. Impaired targeting of ATG14 to autophagosomes in PI4K2A-depleted cells is rescued by the introduction of PI4P but not its downstream product phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Thus, PI4P and PI(4,5)P2 have independent functions in late-stage autophagy. These results provide a mechanism to explain prior studies indicating that PI4K2A and its product PI4P are necessary for autophagosome-lysosome fusion.
    DOI:  https://doi.org/10.1021/acs.biochem.1c00775
  23. Cell Cycle. 2022 Apr 03. 1-11
      Pannexin1 (Panx-1) is a gap junction channel protein that mediates the release of intracellular ATP during autophagy, and thus plays an important role in tumor cell apoptosis and chemo-resistance. However, the role of Panx-1 in cisplatin-resistance of testicular cancer cells remains unclear. We found that cisplatin-resistant I-10 testicular cancer cell lines (I-10/CDDP) autophagy-associated proteins (p62, p-mTOR, mTOR and LC3) exhibited high levels of autophagy in their expression, while LC3-II expression was more significantly in the presence of lysosomal degradation blocked by chloroquine (CQ). Xenograft models using I-10/CDDP cells with knockdown ATG5 and ATG7 were established in mouse models and showed blockade of autophagic flux and inhibition of tumor growth. In addition, inhibition of Panx-1 by carbenoxolone (CBX) and probenecid (PBN), as well as shRNA-mediated knockdown promoted autophagy in the I-10/CDDP cells, which was accompanied by a decrease in the levels of extracellular ATP. In contrast, overexpression of Panx-1 decreased autophagy of I-10/CDDP cells and increased extracellular ATP levels. To further determine the effect of panx-1-mediated ATP release on the autophagy of I-10/CDDP cells, apyrase was used to hydrolyze the extracellular ATP. Apyrase promoted autophagy in I-10/CDDP cells city by decreasing extracellular ATP, regardless of Panx-1 expression. This study demonstrated for the first time that Panx-1-mediated ATP release inhibits autophagy of I-10/CDDP cells, which provides a potential therapeutic strategy for cisplatin-resistant testicular cancer.
    Keywords:  Pannexin-1; autophagy; testis
    DOI:  https://doi.org/10.1080/15384101.2022.2060655
  24. Biosci Rep. 2022 Apr 08. pii: BSR20211856. [Epub ahead of print]
      Lysosomes are key regulators of many fundamental cellular processes such as metabolism, autophagy, immune response, cell signalling and plasma membrane repair. These highly dynamic organelles are composed of various membrane and soluble proteins, which are essential for their proper functioning. The soluble proteins include numerous proteases, glycosidases and other hydrolases, along with activators, required for catabolism. The correct sorting of soluble lysosomal proteins is crucial to ensure the proper functioning of lysosomes, and is achieved through the coordinated effort of many sorting receptors, resident ER and Golgi proteins, and several cytosolic components. Mutations in a number of proteins involved in sorting soluble proteins to lysosomes result in human disease. These can range from rare diseases such as lysosome storage disorders, to more prevalent ones, such as Alzheimer's disease, Parkinson's disease and others, including rare neurodegenerative diseases that affect children. In this review, we discuss the mechanisms that regulate the sorting of soluble proteins to lysosomes, and highlight the effects of mutations in this pathway that cause human disease. More precisely, we will review the route taken by soluble lysosomal proteins from their translation into the ER, their maturation along the Golgi apparatus, and sorting at the trans-Golgi network. We will also highlight the effects of mutations in this pathway that cause human disease.
    Keywords:  Lysosomes; endoplasmic reticulum; endosomes; intracellular transport; neurodegeneration; neuronal ceroid lipofuscinosis
    DOI:  https://doi.org/10.1042/BSR20211856
  25. Front Synaptic Neurosci. 2022 ;14 829354
      Brain synapses pose special challenges on the quality control of their protein machineries as they are far away from the neuronal soma, display a high potential for plastic adaptation and have a high energy demand to fulfill their physiological tasks. This applies in particular to the presynaptic part where neurotransmitter is released from synaptic vesicles, which in turn have to be recycled and refilled in a complex membrane trafficking cycle. Pathways to remove outdated and damaged proteins include the ubiquitin-proteasome system acting in the cytoplasm as well as membrane-associated endolysosomal and the autophagy systems. Here we focus on the latter systems and review what is known about the spatial organization of autophagy and endolysomal processes within the presynapse. We provide an inventory of which components of these degradative systems were found to be present in presynaptic boutons and where they might be anchored to the presynaptic apparatus. We identify three presynaptic structures reported to interact with known constituents of membrane-based protein-degradation pathways and therefore may serve as docking stations. These are (i) scaffolding proteins of the cytomatrix at the active zone, such as Bassoon or Clarinet, (ii) the endocytic machinery localized mainly at the peri-active zone, and (iii) synaptic vesicles. Finally, we sketch scenarios, how presynaptic autophagic cargos are tagged and recruited and which cellular mechanisms may govern membrane-associated protein turnover in the presynapse.
    Keywords:  Bassoon; active zone (AZ); amphisome; autophagy; endocytic zone; endolysosomal system; presynaptic proteostasis; synaptic vesicle (SV)
    DOI:  https://doi.org/10.3389/fnsyn.2022.829354
  26. Autophagy. 2022 Apr 07. 1-2
      Neurons are highly polarized and functionally compartmentalized cells. Under basal conditions, the biogenesis of autophagic vesicles (AVs) was previously shown to take place in the axon tip. As the sequestration of autophagic cargo occurs during the formation of nascent AVs, this would mean that only axonal proteins can be degraded via macroautophagy/autophagy, unless AV biogenesis can also take place on demand, in other neuronal compartments. Our work shows that indeed, activation of NMDA or group I metabotropic glutamate receptors during long-term synaptic depression (LTD) triggers the biogenesis of AVs locally in dendrites. Under these conditions, nascent dendritic AVs are required for synaptic plasticity, as they sequester postsynaptic proteins, whose removal from the postsynapse is necessary for LTD.
    Keywords:  Atg5; ULK1 complex; autophagic vesicle biogenesis; cognitive flexibility; dendrites; excitatory neurons; hippocampus; synaptic plasticity
    DOI:  https://doi.org/10.1080/15548627.2022.2061757
  27. Cell Death Dis. 2022 Apr 07. 13(4): 316
      ULK1 is crucial for initiating autophagosome formation and its activity is tightly regulated by post-translational modifications and protein-protein interactions. In the present study, we demonstrate that TMEM189 (Transmembrane protein 189), also known as plasmanylethanolamine desaturase 1 (PEDS1), negatively regulates the proteostasis of ULK1 and autophagy activity. In TMEM189-overexpressed cells, the formation of autophagesome is impaired, while TMEM189 knockdown increases cell autophagy. Further investigation reveals that TMEM189 interacts with and increases the instability of ULK1, as well as decreases its kinase activities. The TMEM189 N-terminal domain is required for the interaction with ULK1. Additionally, TMEM189 overexpression can disrupt the interaction between ULK1 and TRAF6, profoundly impairs K63-linked polyubiquitination of ULK1 and self-association, leading to the decrease of ULK1 stability. Moreover, in vitro and in vivo experiments suggest that TMEM189 deficiency results in the inhibition of tumorigenicity of gastric cancer. Our findings provide a new insight into the molecular regulation of autophagy and laboratory evidence for investigating the physiological and pathological roles of TMEM189.
    DOI:  https://doi.org/10.1038/s41419-022-04722-y
  28. Ageing Res Rev. 2022 Apr 01. pii: S1568-1637(22)00058-7. [Epub ahead of print] 101616
      Protein degraders are emerging as a potent therapeutic tool to address neurological disorders and many complex diseases. It offered several key advantages, including the doses, drug resistance, and side effects over traditional occupancy-based inhibitors. Translation of chemical degraders into a clinical therapy for neurodegenerative disorders has a well-documented knowledge and resource gap. Researchers strive to develop clinical candidates employing chemical degraders' technologies, including hydrophobic tagging, molecular glues, proteolysis targeting chimeras (PROTACs), specific and nongenetic Inhibitor of Apoptosis Protein (IAP)-dependent protein erasers (SNIPERs), autophagy targeted chimeras, and autophagosome-tethered compounds for targeted degradation of pathological markers in neurodegenerative disease. Herein, we examined the present state of chemical-mediated targeted protein degradation in the quest for medications to treat neurodegenerative diseases. We further identified targeted degraders under clinical development for neurodegenerative diseases summarizing pertinent discoveries guiding the future of degradation therapeutics. We also addressed the necessary pharmacological interventions needed to achieve unprecedented therapeutic efficacy and its associated challenges.
    Keywords:  Protein degraders; Targeted therapy; autophagosomes; drug development, pharmaceutical research; neurodegenerative diseases
    DOI:  https://doi.org/10.1016/j.arr.2022.101616
  29. Aging Dis. 2022 Apr;13(2): 447-457
      Diabetic Encephalopathy (DE) is one of the complications of diabetes mellitus (DM) in the central nervous system. Up to now, the mechanisms of DE are not fully discussed by the field. Autophagy is an intracellular degradation pathway crucial to maintain cellular homeostasis by clearing damaged organelles, pathogens, and unwanted protein aggregates. Increasing evidence has demonstrated that autophagy might play an essential role in DE progress. In this review, we summarize the current evidence on autophagy dysfunction under the condition of DE, and provide novel insights of possibly biological mechanisms linking autophagy impairment to DE, as well as discuss autophagy-targeted therapies as potential treatments for DE.
    Keywords:  autophagy; cognitive impairment; diabetes mellitus; diabetic encephalopathy
    DOI:  https://doi.org/10.14336/AD.2021.0823
  30. Acta Neuropathol. 2022 Apr 07.
      Selective neuronal vulnerability to protein aggregation is found in many neurodegenerative diseases including Alzheimer's disease (AD). Understanding the molecular origins of this selective vulnerability is, therefore, of fundamental importance. Tau protein aggregates have been found in Wolframin (WFS1)-expressing excitatory neurons in the entorhinal cortex, one of the earliest affected regions in AD. The role of WFS1 in Tauopathies and its levels in tau pathology-associated neurodegeneration, however, is largely unknown. Here we report that WFS1 deficiency is associated with increased tau pathology and neurodegeneration, whereas overexpression of WFS1 reduces those changes. We also find that WFS1 interacts with tau protein and controls the susceptibility to tau pathology. Furthermore, chronic ER stress and autophagy-lysosome pathway (ALP)-associated genes are enriched in WFS1-high excitatory neurons in human AD at early Braak stages. The protein levels of ER stress and autophagy-lysosome pathway (ALP)-associated proteins are changed in tau transgenic mice with WFS1 deficiency, while overexpression of WFS1 reverses those changes. This work demonstrates a possible role for WFS1 in the regulation of tau pathology and neurodegeneration via chronic ER stress and the downstream ALP. Our findings provide insights into mechanisms that underpin selective neuronal vulnerability, and for developing new therapeutics to protect vulnerable neurons in AD.
    Keywords:  Alzheimer’s disease; Autophagy-lysosome pathway; ER stress; Entorhinal cortex; Neurodegeneration; Neuronal vulnerability; Tau pathology; WFS1; Wolframin
    DOI:  https://doi.org/10.1007/s00401-022-02417-4
  31. Front Immunol. 2022 ;13 842489
      Stimulator of interferon response cGAMP interactor 1 (STING1), also known as TMEM173, is an immune adaptor protein that governs signal crosstalk that is implicated in many physiological and pathological processes. Although it has been established that STING1 traffics from the endoplasmic reticulum (ER) to Golgi apparatus (Golgi) upon DNA-triggered activation, emerging evidence reveals that STING1 can be transported to different organelles, which dictate its immune-dependent (e.g., the production of type I interferons and pro-inflammatory cytokines) and -independent (e.g., the activation of autophagy and cell death) functions. In this brief review, we outline the roles of STING1 in different organelles (including the ER, ER-Golgi intermediate compartment, Golgi, mitochondria, endosomes, lysosomes, and nucleus) and discuss the potential relevance of these roles to diseases and pharmacological interventions.
    Keywords:  STING1; adaptor protein; autophagy; cell death; immunity; organelle
    DOI:  https://doi.org/10.3389/fimmu.2022.842489
  32. Endocrinology. 2022 Apr 02. pii: bqac041. [Epub ahead of print]
      The mechanistic target of rapamycin (mTOR) signaling pathway is the central regulator of cell growth and proliferation by integrating growth factor and nutrient availability. Under healthy physiological conditions, this process is tightly coordinated and essential to maintain whole-body homeostasis. Not surprisingly, dysregulated mTOR signaling underpins several diseases with increasing incidence worldwide, including obesity, diabetes and cancer. Consequently, there is significant clinical interest in developing therapeutic strategies that effectively target this pathway. The transition of mTOR inhibitors from the bench to bedside, however, has largely been marked with challenges and shortcomings, such as the development of therapy resistance and adverse side effects in patients. In this review, we discuss the current status of first, second and third generation mTOR inhibitors as a cancer therapy in both pre-clinical and clinical settings, with a particular emphasis on the mechanisms of drug resistance. We focus especially on the emerging role of diet as an important environmental determinant of therapy response, and posit a conceptual framework that links nutrient availability and whole-body metabolic states such as obesity with many of the previously defined processes that drive resistance to mTOR-targeted therapies. Given the role of mTOR as a central integrator of cell metabolism and function, we propose that modulating nutrient inputs through dietary interventions may influence the signaling dynamics of this pathway and compensatory nodes. In doing so, new opportunities for exploiting diet/drug synergies are highlighted that may unlock the therapeutic potential of mTOR inhibitors as a cancer treatment.
    Keywords:  diet; drug resistance; mTOR; metabolism
    DOI:  https://doi.org/10.1210/endocr/bqac041
  33. Oxid Med Cell Longev. 2022 ;2022 1863098
      Consistent high-risk human papillomavirus (HPV) infection leads to various malignant cancers. Autophagy can promote cancer progression by helping cancer cells survive under stress or induce oncogenic effects when mutations or abnormalities occur. Mitogen activated protein kinases (MAPKs) can transduce various external or intrinsic stimuli into cellular responses, including autophagy, and dual-specificity phosphates (DUSPs) contribute to the direct regulation of MAPK activities. Previously, we showed that expression of DUSP5 was repressed in HPV16 E7-expressing normal human epidermal keratinocytes (NHEKs). Here we show that clinical HPV16 E7-positive precancerous and cancerous tissues also demonstrate low DUSP5 levels compared with control tissues, indicating that the inverse correlation between HPV16 E7 and DUSP5 is clinically relevant. We furthermore investigated the autophagy response in both DUSP5-deficient and HPV16 E7-expressing NHEKs. Confocal microscopy and Western analysis showed induction of LC3-II levels, autophagosome formation and autophagy fluxes in DUSP5-deficient NHEKs. Furthermore, Western analysis demonstrated specific induction of phosphorylated ERK in DUSP5-deficient and HPV16 E7-expressing NHEKs, indicating that HPV16 E7-mediated repression of DUSP5 results in induced MAPK/ERK signaling. Finally, phosphorylated mTOR and ULK (S757) were reduced in DUSP5-deficient NHEKs, while phosphorylated ULK (S555) and AMPK were increased, thereby inducing canonical autophagy through the mTOR and AMPK pathways. In conclusion, our results demonstrate that HPV16 E7 expression reduces DUSP5 levels, which in turn results in active MAPK/ERK signaling and induction of canonical autophagy through mTOR and MAPK regulation. Given its demonstrated inverse correlation with clinical cancerous tissues, DUSP5 may serve as a potential therapeutic target for cervical cancer.
    DOI:  https://doi.org/10.1155/2022/1863098
  34. Clin Transl Med. 2022 Apr;12(4): e574
      AIMS: Senescence-associated pathological cardiac hypertrophy (SA-PCH) is associated with upregulation of foetal genes, fibrosis, senescence-associated secretory phenotype (SASP), cardiac dysfunction and increased morbidity and mortality. Therefore, we conducted experiments to investigate whether GATA4 accumulation induces SA-PCH, and whether Bmi-1-RING1B promotes GATA4 ubiquitination and its selective autophagic degradation to prevent SA-PCH.METHODS AND RESULTS: Bmi-1-deficient (Bmi-1-/- ), transgenic Bmi-1 overexpressing (Bmi-1Tg ) and wild-type (WT) mice were infused with angiotensin II (Ang II) to stimulate the development of SA-PCH. Through bioinformatics analysis with RNA sequencing data from cardiac tissues, we found that Bmi-1-RING1B and autophagy are negatively related to SA-PCH. Bmi-1 deficiency promoted GATA4-dependent SA-PCH by increasing GATA4 protein and hypertrophy-related molecules transcribed by GATA4 such as ANP and BNP. Bmi-1 deficiency stimulated NF-κB-p65-dependent SASP, leading to cardiac dysfunction, cardiomyocyte hypertrophy and senescence. Bmi-1 overexpression repressed GATA4-dependent SA-PCH. GATA4 degraded by Bmi-1 was mainly dependent on autophagy rather than proteasome. In human myocardium, p16 positively correlated with ANP and GATA4 and negatively correlated with LC3B, Bmi-1 and RING1B; GATA4 positively correlated with p62 and negatively correlated with Bmi-1 and LC3B. With increased p16 protein levels, ANP-, BNP- and GATA4-positive cells or areas increased; however, LC3B-positive cells or areas decreased in human myocardium. GATA4 is ubiquitinated after combining with Bmi-1-RING1B, which is then recognised by p62, is translocated to autophagosomes to form autophagolysosomes and degraded. Downregulated GATA4 ameliorated SA-PCH and cardiac dysfunction by reducing GATA4-dependent hypertrophy and SASP-related molecules. Bmi-1 combined with RING1B (residues 1-179) and C-terminus of GATA4 (residues 206-443 including zinc finger domains) through residues 1-95, including a RING-HC-finger. RING1B combined with C-terminus of GATA4 through the C-terminus (residues 180-336). Adeno-associated viral vector serotype 9 (AAV9)-cytomegalovirus (CMV)-Bmi-1-RING1B treatment significantly attenuated GATA4-dependent SA-PCH through promoting GATA4 autophagic degradation.
    CONCLUSIONS: Bmi-1-RING1B maintained cardiac function and prevented SA-PCH by promoting selective autophagy for degrading GATA4.
    TRANSLATIONAL PERSPECTIVE: AAV9-CMV-Bmi-1-RING1B could be used for translational gene therapy to ubiquitinate GATA4 and prevent GATA4-dependent SA-PCH. Also, the combined domains between Bmi-1-RING1B and GATA4 in aging cardiomyocytes could be therapeutic targets for identifying stapled peptides in clinical applications to promote the combination of Bmi-1-RING1B with GATA4 and the ubiquitination of GATA4 to prevent SA-PCH and heart failure. We found that degradation of cardiac GATA4 by Bmi-1 was mainly dependent on autophagy rather than proteasome, and autophagy agonists metformin and rapamycin could ameliorate the SA-PCH, suggesting that activation of autophagy with metformin or rapamycin could also be a promising method to prevent SA-PCH.
    Keywords:  Bmi-1; GATA4; RING1B; selective autophagy; ubiquitination
    DOI:  https://doi.org/10.1002/ctm2.574
  35. Front Pharmacol. 2022 ;13 854506
      Statins, a class of lipid-lowering drugs, are used in drug repositioning for treatment of human cancer. However, the molecular mechanisms underlying statin-induced cancer cell death and autophagy are not clearly defined. In the present study, we showed that pitavastatin could increase apoptosis in a FOXO3a-dependent manner in the oral cancer cell line, SCC15, and the colon cancer cell line, SW480, along with the blockade of autophagy flux. The inhibition of autophagy by silencing the LC3B gene reduced apoptosis, while blockade of autophagy flux using its inhibitor, Bafilomycin A1, further induced apoptosis upon pitavastatin treatment, which suggested that autophagy flux blockage was the cause of apoptosis by pitavastatin. Further, the FOXO3a protein accumulated due to the blockade of autophagy flux which in turn was associated with the induction of ER stress by transcriptional upregulation of PERK-CHOP pathway, subsequently causing apoptosis due to pitavastatin treatment. Taken together, pitavastatin-mediated blockade of autophagy flux caused an accumulation of FOXO3a protein, thereby leading to the induction of PERK, ultimately causing CHOP-mediated apoptosis in cancer cells. Thus, the present study highlighted the additional molecular mechanism underlying the role of autophagy flux blockade in inducing ER stress, eventually leading to apoptosis by pitavastatin.
    Keywords:  ER stress; FOXO3a; apoptosis; autophagy flux blockade; pitavastatin
    DOI:  https://doi.org/10.3389/fphar.2022.854506
  36. J Immunol. 2022 Apr 06. pii: ji2100050. [Epub ahead of print]
      Human cathelicidin LL-37 is an antimicrobial peptide that has a broad spectrum of antimicrobial activities but also acts on host cells to exert immunomodulatory functions. It has been suggested that the increase of LL-37 in atherosclerotic aortas and the dysregulated autophagy of endothelial cells are involved in the pathogenesis of atherosclerosis. In this study, to elucidate the role of LL-37 in atherosclerosis, we investigated the effect of LL-37 on autophagy in endothelial cells using HUVECs. First, LL-37 upregulated LC3-II (an autophagosomal membrane marker) and enhanced the formation of LC3-positive puncta in the cells, suggesting that LL-37 induces autophagy in endothelial cells. Second, LL-37 was associated with p62, which recognizes ubiquitinated proteins and transfers them to autophagosomes, suggesting that LL-37 is ubiquitinated and recognized by p62. Third, the degradation of LL-37 was delayed, and LL-37 induced cell death in atg7 knockdown cells, which was accompanied by the formation of protein aggregates in the cells. Taken together, these observations suggest that LL-37 induces autophagy in endothelial cells but enhances cell death in autophagy-dysfunctional conditions, in which the intracellular degradation of LL-37 is disturbed. Thus, LL-37 may exert an adverse action on autophagy-dysfunctional endothelial cells to induce cell death in the pathogenesis of atherosclerosis.
    DOI:  https://doi.org/10.4049/jimmunol.2100050
  37. Fish Shellfish Immunol. 2022 Mar 31. pii: S1050-4648(22)00161-9. [Epub ahead of print]124 21-27
      Interferon-mediated innate immune response is the first line of defense against foreign pathogen infection. Overexpression of MITA can activate the expression of interferon and promote the innate immune response of the body to the virus. These innate immune responses are tightly controlled to prevent the host from over-immunizing itself. In this study, we reported that structurally highly conserved PCNA negatively regulates MITA. PCNA overexpression can promote MITA degradation and block the expression of interferon, while the autophagy inhibitor 3-MA significantly inhibits MITA degradation, indicating that PCNA can degrade MITA through the autophagy pathway. PCNA inhibits interferon production by targeting MITA and avoids excessive immune response. In summary, our results indicate that PCNA is involved in the immune response by degrading MITA through the autophagy pathway, which will provide new ideas for further studies on the regulatory mechanism of immune signaling pathways in lower vertebrates.
    Keywords:  Autophagy; IFN; MITA; Negative regulation; PCNA
    DOI:  https://doi.org/10.1016/j.fsi.2022.03.035
  38. Front Pharmacol. 2022 ;13 851832
      Hepatocellular carcinoma (HCC) is one of the most common fatal malignancies and the main cause of cancer-related deaths. The multitarget tyrosine kinase inhibitors (TKIs) sorafenib and regorafenib are systemic therapeutic drugs approved for the treatment of HCC. Here, we found that sorafenib and regorafenib injured mitochondria by inducing mitochondrial Ca2+ (mtCa2+) overload and mitochondrial permeability transition pore (mPTP) opening, resulting in mitochondria-mediated cell death, which was alleviated by cyclosporin A (CsA), an inhibitor of mPTP. Meanwhile, mPTP opening caused PINK1 accumulation on damaged mitochondria, which recruited Parkin to mitochondria to induce mitophagy. Inhibition of autophagy by the lysosomal inhibitor chloroquine (CQ) or inhibition of mitochondrial fission by mdivi-1 aggravated sorafenib- and regorafenib-induced cell death. Moreover, knockdown of PINK1 also promotes sorafenib- and regorafenib-induced cell death. An in vivo study showed that sorafenib and regorafenib inhibited HepG2 cell growth more effectively in PINK1 knockdown cells than in shNTC cells in null mice. Thus, our data demonstrate that PINK1-Parkin-mediated mitophagy alleviates sorafenib and regorafenib antitumor effects in vitro and in vivo.
    Keywords:  HCC; MPTP; PINK1; mitofission; mitophagy; regorafenib; sorafenib
    DOI:  https://doi.org/10.3389/fphar.2022.851832
  39. Epigenomics. 2022 Apr 07.
      
    Keywords:  ATG5; ATG7; FTO; METTL3; ULK1; YTHDF2; autophagy; human diseases; m6A modification; m6A regulators
    DOI:  https://doi.org/10.2217/epi-2021-0531
  40. Angew Chem Int Ed Engl. 2022 Apr 05.
      Metabolic adaptations can help cancer cells to escape from chemotherapeutics, mainly involving autophagy and ATP production. Herein, we report a new rhein-based cyclometalated Ir(III) complex, Ir-Rhein , that can accurately target mitochondria and effectively inhibit metabolic adaptations. The complex Ir-Rhein induces severe mitochondrial damage and initiates mitophagy to reduce the number of mitochondria and subsequently inhibit both mitochondrial and glycolytic bioenergetics, which eventually leads to ATP starvation death. Moreover, Ir-Rhein can overcome cisplatin resistance. In a co-incubation experiment, a 3D tumor spheroids experiment and transcriptome analysis reveal that Ir-Rhein shows promising antiproliferation performance for cisplatin-resistant cancer cells with the regulation of platinum resistance-related transporters. To the best of our knowledge, this is a new strategy to overcome metallodrug resistance with a mitochondria-relevant treatment.
    Keywords:  mitophagy, metabolic adaptation, mitochondria-targeting, metallodrug resistance
    DOI:  https://doi.org/10.1002/anie.202203843
  41. Front Cell Dev Biol. 2022 ;10 785252
      Macroautophagy (hereafter referred to as autophagy) is a homeostatic process that preserves cellular integrity. In mice, autophagy regulates pancreatic ductal adenocarcinoma (PDAC) development in a manner dependent on the status of the tumor suppressor gene Trp53. Studies published so far have investigated the impact of autophagy blockage in tumors arising from Trp53-hemizygous or -homozygous tissue. In contrast, in human PDACs the tumor suppressor gene TP53 is mutated rather than allelically lost, and TP53 mutants retain pathobiological functions that differ from complete allelic loss. In order to better represent the patient situation, we have investigated PDAC development in a well-characterized genetically engineered mouse model (GEMM) of PDAC with mutant Trp53 (Trp53 R172H ) and deletion of the essential autophagy gene Atg7. Autophagy blockage reduced PDAC incidence but had no impact on survival time in the subset of animals that formed a tumor. In the absence of Atg7, non-tumor-bearing mice reached a similar age as animals with malignant disease. However, the architecture of autophagy-deficient, tumor-free pancreata was effaced, normal acinar tissue was largely replaced with low-grade pancreatic intraepithelial neoplasias (PanINs) and insulin expressing islet β-cells were reduced. Our data add further complexity to the interplay between Atg7 inhibition and Trp53 status in tumorigenesis.
    Keywords:  ATG7; autophagy; metastasis; p53; pancreatic cancer
    DOI:  https://doi.org/10.3389/fcell.2022.785252
  42. Aging Cell. 2022 Apr 07. e13604
      Methionine restriction (MetR) can extend lifespan and delay the onset of aging-associated pathologies in most model organisms. Previously, we showed that supplementation with the metabolite S-adenosyl-L-homocysteine (SAH) extends lifespan and activates the energy sensor AMP-activated protein kinase (AMPK) in the budding yeast Saccharomyces cerevisiae. However, the mechanism involved and whether SAH can extend metazoan lifespan have remained unknown. Here, we show that SAH supplementation reduces Met levels and recapitulates many physiological and molecular effects of MetR. In yeast, SAH supplementation leads to inhibition of the target of rapamycin complex 1 (TORC1) and activation of autophagy. Furthermore, in Caenorhabditis elegans SAH treatment extends lifespan by activating AMPK and providing benefits of MetR. Therefore, we propose that SAH can be used as an intervention to lower intracellular Met and confer benefits of MetR.
    Keywords:   Caenorhabditis elegans ; Saccharomyces cerevisiae ; S-adenosyl-L-homocysteine (SAH); S-adenosyl-L-methionine (SAM); methionine restriction (MetR)
    DOI:  https://doi.org/10.1111/acel.13604
  43. Kidney360. 2020 Nov 25. 1(11): 1319-1327
      The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, is crucial in regulating cell growth, metabolism, proliferation, and survival. Under physiologic conditions, mTOR signaling maintains podocyte and tubular cell homeostasis. In AKI, activation of mTOR signaling in tubular cells and interstitial fibroblasts promotes renal regeneration and repair. However, constitutive activation of mTOR signaling in kidneys results in the initiation and progression of glomerular hypertrophy, interstitial fibrosis, polycystic kidney disease, and renal cell carcinoma. Here, we summarize the recent studies about mTOR signaling in renal physiology and injury, and discuss the possibility of its use as a therapeutic target for kidney diseases.
    Keywords:  TOR serine-threonine kinases; acute kidney injury; acute kidney injury and ICU nephrology; glomerular hypertrophy; kidney fibrosis; mTOR; polycystic kidney disease; renal cell carcinoma
    DOI:  https://doi.org/10.34067/KID.0003782020
  44. Oxid Med Cell Longev. 2022 ;2022 5851315
      Oxidative stress and diminished autophagy in the retinal pigment epithelium (RPE) play crucial roles in the pathogenesis of age-related macular degeneration (AMD). Enhancing autophagy has recently been identified as an important strategy to protect RPE cells from oxidative damage. Ming-Mu-Di-Huang-Pill (MMDH pill) is a traditional herbal medicine used to treat AMD, and its molecular mechanism is not well understood. The aim of the present study was to investigate whether the MMDH pill relieved acute oxidative damage by activating autophagy in an in vitro and in vivo model of sodium iodate (NaIO3). The results showed that NaIO3 induced cell death and inhibited proliferation. The MMDH pill increased cell viability, restored the activities of antioxidant enzymes, and reduced reactive oxygen species (ROS) fluorescence intensity. The MMDH pill mediated Kelch-like ECH-associated protein 1 (Keap1) degradation and decreased oxidative damage, which was blocked in autophagy inhibitor (chloroquine) or sequestosome-1 (SQSTM1) siRNA-treated RPE cells. Furthermore, we indicated that the MMDH pill could promote adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and autophagy adaptor-SQSTM1 expression, which could stimulate autophagic degradation of Keap1. In addition, the MMDH pill increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation in a SQSTM1-dependent manner and induced the expression of the downstream antioxidant factors heme oxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate quinone dehydrogenase 1 (NQO1). In conclusion, MMDH pill plays a protective role in relieving NaIO3-induced oxidative stress by activating the AMPK/SQSTM1/Keap1 pathway. The MMDH pill may be useful to treat AMD by maintaining redox homeostasis and autophagy.
    DOI:  https://doi.org/10.1155/2022/5851315
  45. Front Pharmacol. 2022 ;13 860146
      Uncontrolled acute inflammation progresses to persistent inflammation that leads to various chronic inflammatory diseases, including asthma, Crohn's disease, rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus. CD4+ T cells are key immune cells that determine the development of these chronic inflammatory diseases. CD4+ T cells orchestrate adaptive immune responses by producing cytokines and effector molecules. These functional roles of T cells vary depending on the surrounding inflammatory or anatomical environment. Autophagy is an important process that can regulate the function of CD4+ T cells. By lysosomal degradation of cytoplasmic materials, autophagy mediates CD4+ T cell-mediated immune responses, including cytokine production, proliferation, and differentiation. Furthermore, through canonical processes involving autophagy machinery, autophagy also contributes to the development of chronic inflammatory diseases. Therefore, a targeted intervention of autophagy processes could be used to treat chronic inflammatory diseases. This review focuses on the role of autophagy via CD4+ T cells in the pathogenesis and treatment of such diseases. In particular, we explore the underlying mechanisms of autophagy in the regulation of CD4+ T cell metabolism, survival, development, proliferation, differentiation, and aging. Furthermore, we suggest that autophagy-mediated modulation of CD4+ T cells is a promising therapeutic target for treating chronic inflammatory diseases.
    Keywords:  CD4+ T cell; Crohn’s disease; asthma; autophagy; multiple sclerosis; rheumatoid arthritis; systemic lupus erythematosus
    DOI:  https://doi.org/10.3389/fphar.2022.860146
  46. J Exp Clin Cancer Res. 2022 Apr 09. 41(1): 135
      The TANK-binding kinase 1 (TBK1) is a serine/threonine kinase belonging to the non-canonical inhibitor of nuclear factor-κB (IκB) kinase (IKK) family. TBK1 can be activated by pathogen-associated molecular patterns (PAMPs), inflammatory cytokines, and oncogenic kinases, including activated K-RAS/N-RAS mutants. TBK1 primarily mediates IRF3/7 activation and NF-κB signaling to regulate inflammatory cytokine production and the activation of innate immunity. TBK1 is also involved in the regulation of several other cellular activities, including autophagy, mitochondrial metabolism, and cellular proliferation. Although TBK1 mutations have not been reported in human cancers, aberrant TBK1 activation has been implicated in the oncogenesis of several types of cancer, including leukemia and solid tumors with KRAS-activating mutations. As such, TBK1 has been proposed to be a feasible target for pharmacological treatment of these types of cancer. Studies suggest that TBK1 inhibition suppresses cancer development not only by directly suppressing the proliferation and survival of cancer cells but also by activating antitumor T-cell immunity. Several small molecule inhibitors of TBK1 have been identified and interrogated. However, to this point, only momelotinib (MMB)/CYT387 has been evaluated as a cancer therapy in clinical trials, while amlexanox (AMX) has been evaluated clinically for treatment of type II diabetes, nonalcoholic fatty liver disease, and obesity. In this review, we summarize advances in research into TBK1 signaling pathways and regulation, as well as recent studies on TBK1 in cancer pathogenesis. We also discuss the potential molecular mechanisms of targeting TBK1 for cancer treatment. We hope that our effort can help to stimulate the development of novel strategies for targeting TBK1 signaling in future approaches to cancer therapy.
    Keywords:  Autophagy; Cancer pathogenesis; Immunity; Inflammation; Mitophagy; Oncogenesis; Proliferation; Survival; TBK1; TBK1 inhibitor
    DOI:  https://doi.org/10.1186/s13046-022-02352-y
  47. Front Cell Dev Biol. 2022 ;10 808140
      Hepatosteatosis, characterized by excessive accumulation of lipids in the liver, is a major health issue in modern society. Understanding how altered hepatic lipid metabolism/homeostasis causes hepatosteatosis helps to develop therapeutic interventions. Previous studies identify mitochondrial dysfunction as a contributor to hepatosteatosis. But, the molecular mechanisms of mitochondrial dysfunction leading to altered lipid metabolism remain incompletely understood. Our previous work shows that Rheb, a Ras-like small GTPase, not only activates mTORC1 but also promotes mitochondrial ATP production through pyruvate dehydrogenase (PDH). In this study, we further demonstrate that Rheb controls hepatic triglyceride secretion and reduces diet-induced lipid accumulation in a mouse liver. Genetic deletion of Rheb causes rapid and spontaneous steatosis in the liver, which is unexpected from the role of mTORC1 that enhances lipid synthesis, whereas Rheb transgene remarkably reduces diet-induced hepatosteatosis. Results suggest that the hepatosteatosis in Rheb KO is an outcome of impaired lipid secretion, which is linked to mitochondrial ATP production of hepatocytes. Our findings highlight an under-appreciated role of Rheb in the regulation of hepatic lipid secretion through mitochondrial energy production, with therapeutic implication.
    Keywords:  ATP; Rheb; VLDL; hepatosteatosis; triglyceride
    DOI:  https://doi.org/10.3389/fcell.2022.808140
  48. Cell Mol Biol Lett. 2022 Apr 05. 27(1): 32
      BACKGROUND: Autophagy plays an essential role in maintaining cellular homeostasis and in the response to cellular stress. Autophagy is also involved in cell cycle progression, yet the relationship between these processes is not clearly defined.RESULTS: In exploring this relationship, we observed that the inhibition of autophagy impaired the G2/M phase-arresting activity of etoposide but enhanced the G1 phase-arresting activity of palbociclib. We further investigated the connection of basal autophagy and cell cycle by utilizing the autophagosome tracer dye Cyto-ID in two ways. First, we established a double-labeling flow-cytometric procedure with Cyto-ID and the DNA probe DRAQ5, permitting the cell cycle phase-specific determination of autophagy in live cells. This approach demonstrated that different cell cycle phases were associated with different autophagy levels: G1-phase cells had the lowest level, and G2/M-phase cells had the highest one. Second, we developed a flow-cytometric cell-sorting procedure based on Cyto-ID that separates cell populations into fractions with low, medium, and high autophagy. Cell cycle analysis of Cyto-ID-sorted cells confirmed that the high-autophagy fraction contained a much higher percentage of G2/M-phase cells than the low-autophagy fraction. In addition, Cyto-ID-based cell sorting also proved to be useful for assessing other autophagy-related processes: extracellular flux analysis revealed metabolic differences between the cell populations, with higher autophagy being associated with higher respiration, higher mitochondrial ATP production, and higher glycolysis.
    CONCLUSION: This work provides clear evidence of high autophagy in G2/M-phase cells by establishing a novel cell sorting technique based on Cyto-ID.
    Keywords:  Autophagy; Cell cycle; Cell sorting; Cyto-ID; DRAQ5; Metabolic analysis
    DOI:  https://doi.org/10.1186/s11658-022-00334-8
  49. Front Cell Dev Biol. 2022 ;10 852812
      Malignant pleural mesothelioma (MPM) is a rare type of cancer with a grim prognosis. So far, no targetable oncogenic mutation was identified in MPM and biomarkers with predictive value toward drug sensitivity or resistance are also lacking. Nintedanib (BIBF1120) is a small-molecule tyrosine kinase inhibitor that showed promising efficacy preclinically and in phase II trial in MPM as an angiogenesis inhibitor combined with chemotherapy. However, the extended phase III trial failed. In this study, we investigated the effect of nintedanib on one of its targets, the SRC kinase, in two commercial and six novel MPM cell lines. Surprisingly, nintedanib treatment did not inhibit SRC activation in MPM cells and even increased phosphorylation of SRC in several cell lines. Combination treatment with the SRC inhibitor dasatinib could reverse this effect in all cell lines, however, the cellular response was dependent on the drug sensitivity of the cells. In 2 cell lines, with high sensitivity to both nintedanib and dasatinib, the drug combination had no synergistic effect but cell death was initiated. In 2 cell lines insensitive to nintedanib combination treatment reduced cell viability synergisticaly without cell death. In contrast, in these cells both treatments increased the autophagic flux assessed by degradation of the autophagy substrate p62 and increased presence of LC3B-II, increased number of GFP-LC3 puncta and decreased readings of the HiBiT-LC3 reporter. Additionaly, autophagy was synergistically promoted by the combined treatment. At the transcriptional level, analysis of lysosomal biogenesis regulator Transcription Factor EB (TFEB) showed that in all cell lines treated with nintedanib and to a lesser extent, with dasatinib, it became dephosphorylated and accumulated in the nucleus. Interestingly, the expression of certain known TFEB target genes implicated in autophagy or lysosomal biogenesis were significantly modified only in 1 cell line. Finally, we showed that autophagy induction in our MPM cell lines panel by nintedanib and dasatinib is independent of the AKT/mTOR and the ERK pathways. Our study reveals that autophagy can serve as a cytoprotective mechanism following nintedanib or dasatinib treatments in MPM cells.
    Keywords:  TFEB; autophagy; dasatinib; malignant pleural mesothelioma; nintedanib
    DOI:  https://doi.org/10.3389/fcell.2022.852812
  50. J Biochem Mol Toxicol. 2022 Apr 06. e23064
      Ubiquitin proteasome system (UPS) and autophagy both pathways are involved in clearing the nonessential cellular components and also crosstalk during cellular response to normal and stress conditions. The F-box motif proteins constitute the SCF-E3 ligase complex of the UPS pathway in Saccharomyces cerevisiae and are involved in the substrate recruitment for ubiquitination. The ATG1 encoded Atg1p, a conserved serine-threonine kinase is crucial for the autophagy process. Here in this study, we report that loss of F-box motif encoding YDR131C and ATG1 together results in growth defects, floc formation, sensitivity to hydroxyurea, methyl methanesulfonate, and hydrogen peroxide. Both the genes also interact with the flocculation-related genes (FLO) and associate with gene ontology terms "ubiquitin-protein transferase activity" and "cellular catabolic process." Based on in silico analysis and experimental evidence we conclude that YDR131C and ATG1 function in parallel pathways to regulate the growth, flocculation, and stress response.
    Keywords:  DAPI; F-box motif; flocculation; hydroxyurea; stress
    DOI:  https://doi.org/10.1002/jbt.23064
  51. J Dairy Res. 2022 Apr 07. 1-7
      Streptococcus agalactiae (S. agalactiae) infection is a significant cause of mastitis, resulting in loss of cellular homeostasis and tissue damage. Autophagy plays an essential function in cell survival, defense, and the preservation of cellular homeostasis, and is often part of the response to pathogenic challenge. However, the effect of autophagy induced by S. agalactiae in bovine mammary epithelial cells (bMECs) is mainly unknown. So in this study, an intracellular S. agalactiae infection model was established. Through evaluating the autophagy-related indicators, we observed that after S. agalactiae infection, a significant quantity of LC3-I was converted to LC3-II, p62 was degraded, and levels of Beclin1 and Bcl2 increased significantly in bMECs, indicating that S. agalactiae induced autophagy. The increase in levels of LAMP2 and LysoTracker Deep Red fluorescent spots indicated that lysosomes had participated in the degradation of autophagic contents. After autophagy was activated by rapamycin (Rapa), the amount of p-Akt and p-mTOR decreased significantly, whilst the amount of intracellular S. agalactiae increased significantly. Whereas the autophagy was inhibited by 3-methyladenine (3MA), the number of intracellular pathogens decreased. In conclusion, the results demonstrated that S. agalactiae could induce autophagy through PI3K/Akt/mTOR pathway and utilize autophagy to survive in bMECs.
    Keywords:  Autophagy; Streptococcus agalactiae; bovine mammary epithelial cell; intracellular survival; mastitis
    DOI:  https://doi.org/10.1017/S0022029922000243
  52. J Chin Med Assoc. 2022 Apr 05.
      The cellular process responsible for the degradation of cytosolic proteins and subcellular organelles in lysosomes was termed "autophagy" This process occurs at a basal level in most tissues as part of tissue homeostasis that redounds to the regular turnover of components inside cytoplasm. The breakthrough in the autophagy field is the identification of key players in the autophagy pathway, compounded under the name 'autophagy-related genes (ATG) encoding for autophagy effector proteins. Generally, the function of autophagy can be classified into two divisions: intracellular clearance of defective macromolecules and organelles and generation of degradation products. Therapeutic strategies using stem cell-based approach come as a promising therapy and develop rapidly recently as stem cells have high self-renewability and differentiation capability as known as mesenchymal stem cells (MSCs). They are defined as adherent fibroblast-like population with the abilities to self-renew and multi-lineage differentiate into osteogenic, adipogenic, and chondrogenic lineage cells. To date, they are the most extensively applied adult stem cells in clinical trials. The properties of MSCs such as immunomodulation, neuroprotection and tissue repair pertaining to cell differentiation processes to replace lost, or damaged cells, for aiding cell repair and revival. Autophagy has come into view as a remarkable mechanism for maintaining homeostasis as well as ensure the adequate function and survival of long-lived stem cells also plays remarkable roles in protecting stem cells against cellular stress when the stem cell regenerative capacity is harmed in the aging and degenerative. The therapeutic use of MSCs could obtain a strong improvement through the understanding of underexplored mechanisms in MSC actions and expand the spectrum of their clinical applications.
    DOI:  https://doi.org/10.1097/JCMA.0000000000000728
  53. Antioxid Redox Signal. 2022 Apr 04.
      SIGNIFICANCE: Mitochondria-Associated Membranes (MAMs) are highly dynamic endoplasmic reticulum (ER)-mitochondria contact sites that, due to the transfer of lipids and Ca2+ between these organelles, modulate several physiologic processes, such as ER stress response, mitochondrial bioenergetics and fission/fusion events, autophagy and inflammation. In addition, these contacts are implicated in the modulation of the cellular redox status since several MAMs-resident proteins are involved in the generation of reactive oxygen species (ROS), which can act both as signaling mediators or deleterious molecules, depending on their intracellular levels.RECENT ADVANCES: In the last years, structural and functional alterations of MAMs have been associated with the pathophysiology of several neurodegenerative diseases that are closely associated with impairment of several MAMs-associated events, including perturbation of the redox state upon accumulation of high ROS levels.
    CRITICAL ISSUES: Inter-organelle contacts must be tightly regulated to preserve cellular functioning by maintaining Ca2+ and protein homeostasis, lipid metabolism, mitochondrial dynamics and energy production, as well as ROS signaling. Simultaneously, these contacts should avoid mitochondrial Ca2+ overload, which might lead to energetic deficits and deleterious ROS accumulation, culminating in oxidative stress-induced activation of apoptotic cell death pathways, which are common features of many neurodegenerative diseases.
    FUTURE DIRECTIONS: Given that Sig-1R is an ER resident chaperone highly enriched at the MAMs and controls ER to mitochondria Ca2+ flux, as well as oxidative and ER stress responses, its potential as a therapeutic target for neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer, Parkinson and Huntington diseases should be further explored.
    DOI:  https://doi.org/10.1089/ars.2020.8231
  54. iScience. 2022 Apr 15. 25(4): 104085
      Hepatic lipid accumulation is closely associated with nonalcoholic fatty liver disease (NAFLD). Adipose-triglyceride-lipase (ATGL) regulates triglyceride hydrolysis and maintains energy homeostasis in hepatocytes. Identifying key factors in the regulation of ATGL will help tackle hepatic lipid accumulation and related metabolic diseases. Herein, we demonstrate that syntaxin11 (STX11), a member of the SNARE family, generally expressed in immune cells, mediates lipid metabolism by binding to ATGL and inhibiting lipid droplet degradation and lipid autophagy in hepatocytes. Our data show that the C-terminal of STX11 and the patatin domain-containing segment of ATGL have direct physical interactions. Thus, STX11 overexpression prevents spatial translocation of ATGL onto LDs by recruitment of ATGL to the ER. Conversely, STX11 deficiency in hepatocytes promotes lipid hydrolysis, and the ATGL-SIRT1 signaling pathway enhances lipophagy. Overall, this study uncovered that the regulation of lipolysis and lipophagy is achieved by STX11 through the attenuation of ATGL action in hepatocytes.
    Keywords:  Biological sciences; Cell biology; Endocrinology; Molecular biology; Physiology
    DOI:  https://doi.org/10.1016/j.isci.2022.104085