bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2023‒05‒07
43 papers selected by
Viktor Korolchuk, Newcastle University



  1. Biophys Rev. 2023 Apr;15(2): 239-255
      Mitochondria are the primary cellular energy generators, supplying the majority of adenosine triphosphate through oxidative phosphorylation, which is necessary for neuron function and survival. Mitophagy is the metabolic process of eliminating dysfunctional or redundant mitochondria. It is a type of autophagy and it is crucial for maintaining mitochondrial and neuronal health. Impaired mitophagy leads to an accumulation of damaged mitochondria and proteins leading to the dysregulation of mitochondrial quality control processes. Recent research shows the vital role of mitophagy in neurons and the pathogenesis of major neurodegenerative diseases. Mitophagy also plays a major role in the process of aging. This review describes the alterations that are being caused in the mitophagy process at the molecular level in aging and in neurodegenerative diseases, particularly Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis, also looks at how mitophagy can be exploited as a therapeutic target for these diseases.
    Keywords:  Aging; Alzheimer’s disease; Amyotrophic lateral sclerosis; Mitochondria; Mitophagy; Neurodegenerative diseases; Parkinson’s disease
    DOI:  https://doi.org/10.1007/s12551-023-01057-6
  2. Pharmacol Rep. 2023 Apr 29.
      Autophagy is recognized as a lysosomal degradation pathway important for cellular and organismal homeostasis. Accumulating evidence has demonstrated that autophagy is a paradoxical mechanism that regulates homeostasis and prevents stress under physiological and pathological conditions. Nevertheless, how autophagy is implicated in immune responses remains unclear. It is well established that autophagy bridges innate and adaptive immunity, while autophagic dysfunction is closely related to infection, inflammation, neurodegeneration, and tumorigenesis. Therefore, autophagy has attracted great attention from fundamental and translational fields due to its crucial role in inflammation and immunity. Inflammation is involved in the development and progression of various human diseases, and as a result, autophagy might be a potential target to prevent and treat inflammatory diseases. Nevertheless, insufficient autophagy might cause cell death, perpetrate inflammation, and trigger hereditary unsteadiness. Hence, targeting autophagy is a promising disease prevention and treatment strategy. To accomplish this safely, we should thoroughly understand the basic aspects of how autophagy works. Herein, we systematically summarized the correlation between autophagy and inflammation and its implication for human diseases.
    Keywords:  Autophagy; Cancer; Chemoprevention; Disease; Inflammation
    DOI:  https://doi.org/10.1007/s43440-023-00486-0
  3. Nat Aging. 2023 May 04.
      Inhibition of the protein kinase mechanistic target of rapamycin (mTOR) with the Food and Drug Administration (FDA)-approved therapeutic rapamycin promotes health and longevity in diverse model organisms. More recently, specific inhibition of mTORC1 to treat aging-related conditions has become the goal of basic and translational scientists, clinicians and biotechnology companies. Here, we review the effects of rapamycin on the longevity and survival of both wild-type mice and mouse models of human diseases. We discuss recent clinical trials that have explored whether existing mTOR inhibitors can safely prevent, delay or treat multiple diseases of aging. Finally, we discuss how new molecules may provide routes to the safer and more selective inhibition of mTOR complex 1 (mTORC1) in the decade ahead. We conclude by discussing what work remains to be done and the questions that will need to be addressed to make mTOR inhibitors part of the standard of care for diseases of aging.
    DOI:  https://doi.org/10.1038/s43587-023-00416-y
  4. Biochem Pharmacol. 2023 Apr 29. pii: S0006-2952(23)00167-3. [Epub ahead of print] 115576
      Alzheimer's disease (AD) is the most common form of progressive dementia and there is no truly efficacious treatment. Accumulating evidence indicates that impaired autophagic function for removal of damaged mitochondria and protein aggregates such as amyloid and tau protein aggregates may contribute to the pathogenesis of AD. Epidemiologic studies have implicated alcohol abuse in promoting AD, yet the underlying mechanisms are poorly understood. In this review, we discuss mechanisms of selective autophagy for mitochondria and protein aggregates and how these mechanisms are impaired by aging and alcohol consumption. We also discuss potential genetic and pharmacological approaches for targeting autophagy/mitophagy, as well as lysosomal and mitochondrial biogenesis, for the potential prevention and treatment of AD.
    Keywords:  Aggrephagy; Mitochondria; Mitophagy; NAD; TFEB
    DOI:  https://doi.org/10.1016/j.bcp.2023.115576
  5. Int J Mol Med. 2023 Jun;pii: 50. [Epub ahead of print]51(6):
      Parkinson's disease (PD) is a neurodegenerative disorder that has a high incidence during the aging process and is characterized by the loss of dopaminergic neurons in the substantia nigra, leading to motor dysfunctions and non‑motor symptoms. Impaired clearance and excessive accumulation of aberrantly modified proteins or damaged organelles, such as aggregated α‑synuclein and dysfunctional mitochondria, are regarded as the main causes of nigrostriatal neurodegeneration. As one of the major degradation pathways, autophagy can recycle these useless or toxic substances to maintain cellular homeostasis and it plays a crucial role in PD progression. MicroRNAs (miRNAs) are a group of small non‑coding RNA molecules that regulate gene expression by silencing targeted mRNAs. Recent studies have illustrated that autophagy‑regulating miRNA has been implicated in pathological processes of PD, including α‑synuclein accumulation, mitochondrial damage, neuroinflammation and neuronal apoptosis, which suggests that targeting autophagy‑regulating miRNAs may provide novel therapeutic strategies for this disease. The present review summarizes the role of autophagy in PD and emphasizes the role of miRNA‑mediated autophagy in PD, for the development of promising interventions in this disease.
    Keywords:  Parkinson's disease; autophagy; miRNAs; therapy; α‑synuclein
    DOI:  https://doi.org/10.3892/ijmm.2023.5253
  6. Cardiovasc Hematol Disord Drug Targets. 2023 May 03.
      Myocardial infarction and its sequalae remain the leading cause of death worldwide. Myocardial infarction (MI) survivors continue to live a poor quality of life due to extinguished heart failure. The post-MI period involves several changes at the cellular and subcellular levels, of which autophagy dysfunction. Autophagy is involved in the regulation of post-MI changes. Physiologically, autophagy preserves intracellular homeostasis by regulating energy expenditure and sources. Furthermore, dysregulated autophagy is considered the hallmark of the post-MI pathophysiological changes, which leads to the known short and long post-MI reperfusion injury sequalae. Autophagy induction strengthens self-defense mechanisms of protection against energy deprivation through economic energy sources and uses alternative sources of energy through the degradation of intracellular components of the cardiomyocyte. The protective mechanism against post-MI injury includes the enhancement of autophagy combined with hypothermia, which induces autophagy. However, several factors regulate autophagy, including starvation, nicotinamide adenine dinucleotide (NAD+), Sirtuins, other natural foods and pharmacological agents. Autophagy dysregulation involves genetics, epigenetics, transcription factors, small noncoding RNAs, small molecules, and special microenvironment. Autophagy therapeutic effects are signaling pathway-dependent and MI stage dependent. The paper covers recent advances in the molecular physiopathology of autophagy in post-MI injury and its potential target as a future therapeutic strategy.
    Keywords:  Autophagy; Beclin 1 & Uhrf1; Cardiomyocyte; Generation; JNK & NFκB; Mitophagy; Myocardial Infarction; PI3K/AKT/mTOR/p70S6K; Post-MI Remodulation; mTOR & JAK; post MI injury
    DOI:  https://doi.org/10.2174/1871529X23666230503123612
  7. Drug Discov Today. 2023 Apr 28. pii: S1359-6446(23)00116-2. [Epub ahead of print] 103600
      Epilepsy (EP) is a long-term neurological disorder characterized by neuroinflammatory responses, neuronal apoptosis, imbalance between excitatory and inhibitory neurotransmitters, and oxidative stress in the brain. Autophagy is a process of cellular self-regulation to maintain normal physiological functions. Emerging evidence suggests that dysfunctional autophagy pathways in neurons are a potential mechanism underlying EP pathogenesis. In this review, we discuss current evidence and molecular mechanisms of autophagy dysregulation in EP and the probable function of autophagy in epileptogenesis. Moreover, we review the autophagy modulators reported for the treatment of EP models, and discuss the obstacles to, and opportunities for, the potential therapeutic applications of novel autophagy modulators as EP therapies.
    Keywords:  autophagy; autophagy modulators; drug discovery; epilepsy
    DOI:  https://doi.org/10.1016/j.drudis.2023.103600
  8. Curr Pharm Biotechnol. 2023 Apr 28.
      When compared to chemical medicines, herbal medicines have the greatest therapeutic benefit while having fewer harmful side effects. Many different components in herbs have an anticancer impact, but the exact mechanism of how they work is unknown. Some herbal medicines have even been shown to trigger autophagy, a process that has shown promise as a potential cancer treatment. In the past ten years, autophagy has come to be recognised as a crucial mechanism in the maintenance of cellular homeostasis, which has led to the discovery of its implications in the pathology of the majority of cellular environments as well as human disorders. Autophagy is a catabolic process that is used by cells to maintain their homeostasis. This process involves the degradation of misfolded, damaged, and excessive proteins, as well as nonfunctional organelles, foreign pathogens, and other cellular components. Autophagy is a highly conserved process. In this review article, several naturally occurring chemicals are discussed. These compounds offer excellent prospects for autophagy inducers, which are substances that can hasten the death of cells when used as a complementary or alternative treatment for cancer. It requires additional exploration in preclinical and clinical investigations, notwithstanding recent advances in therapeutic medications or agents of natural products in numerous cancers. These advancements have been made despite the need for further investigation.
    Keywords:  anti-cancer; apoptosis; autophagosomes; autophagy induction; autophagy mechanism; herbal constituents; lysosomes
    DOI:  https://doi.org/10.2174/1389201024666230428114740
  9. Cell Metab. 2023 May 02. pii: S1550-4131(23)00136-5. [Epub ahead of print]35(5): 725-727
      Systemic control of homeostatic processes is of fundamental importance for survival and adaptation in metazoans. In this issue of Cell Metabolism, Chen and colleagues identify and methodically dissect a signaling cascade that is mobilized by the agouti-related peptide (AgRP)-expressing neurons in the hypothalamus, to ultimately modulate autophagy and metabolism in the liver upon starvation.
    DOI:  https://doi.org/10.1016/j.cmet.2023.04.009
  10. Front Comput Neurosci. 2023 ;17 1068150
      Accumulation of the misfolded synaptic protein α-synuclein (αSyn*) is a hallmark of neurodegenerative disease in Parkinson's disease (PD). Recent studies suggest that the autophagy lysosome pathway (ALP) including both the Beclin1-associated and mTOR-signaling pathways is involved in the αSyn* clearance mechanism. In this study, a mathematical model is proposed for the degradation of αSyn* by ALP with the crosstalk element of mTOR. Using codimension-1 bifurcation analysis, the tri-stability of αSyn* is surveyed under three different stress signals and, in addition, consideration is given to the regulatory mechanisms for the Beclin1- and mTOR-dependent rates on αSyn* degradation using the codimension-1 and-2 bifurcation diagrams. It was found that, especially under internal and external oxidative stresses (S 1), the bistable switch of the aggregation of αSyn* can be transformed from an irreversible to a reversible condition through the ALP degradation pathways. Furthermore, the robustness of the tri-stable state for the stress S 1 to the parameters related to mTOR-mediated ALP was probed. It was confirmed that mTOR-mediated ALP is important for maintaining the essential dynamic features of the tri-stable state. This study may provide a promising avenue for conducting further experiments and simulations of the degradation mechanism of dynamic modeling in PD.
    Keywords:  Parkinson's disease; autophagy lysosome pathway; mTOR; tri-stability; α-synuclein
    DOI:  https://doi.org/10.3389/fncom.2023.1068150
  11. Exp Cell Res. 2023 Apr 29. pii: S0014-4827(23)00161-1. [Epub ahead of print] 113614
      Cells are programmed to favorably respond towards the nutrient availability by adapting their metabolism to meet energy demands. AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine energy-sensing kinase. It gets activated upon a decrease in the cellular energy status as reflected by an increased AMP/ATP ratio, ADP, and also during the conditions of glucose starvation without change in the adenine nucelotide ratio. AMPK functions as a centralized regulator of metabolism, acting at cellular and physiological levels to circumvent the metabolic stress by restoring energy balance. This review intricately highlights the integrated signaling pathways by which AMPK gets activated allosterically or by multiple non-canonical upstream kinases. AMPK activates the ATP generating processes (e.g., fatty acid oxidation) and inhibits the ATP consuming processes that are non-critical for survival (e.g., cell proliferation, protein and triglyceride synthesis). An integrated signaling network with AMPK as the central effector regulates all the aspects of enhanced stress resistance, qualified cellular housekeeping, and energy metabolic homeostasis. Importantly, the AMPK mediated amelioration of cellular stress and inflammatory responses are mediated by stimulation of transcription factors such as Nrf2, SIRT1, FoxO and inhibition of NF-κB serving as main downstream effectors. Moreover, many lines of evidence have demonstrated that AMPK controls autophagy through mTOR and ULK1 signaling to fine-tune the metabolic pathways in response to different cellular signals. This review also highlights the critical involvement of AMPK in promoting mitochondrial health, and homeostasis, including mitophagy. Loss of AMPK or ULK1 activity leads to aberrant accumulation of autophagy-related proteins and defective mitophagy thus, connecting cellular energy sensing to autophagy and mitophagy.
    Keywords:  AMPK; Autophagy; Cellular stress; Metabolic stress; Mitophagy
    DOI:  https://doi.org/10.1016/j.yexcr.2023.113614
  12. Autophagy. 2023 May 01. 1-2
      The autophagic machinery is highly conserved in eukaryotes. Plants, as sessile organisms, are more susceptible to environmental stresses than animals. Autophagy plays a pivotal role in plant stress responses, but the regulation of autophagic flux in plants remains enigmatic with few autophagic receptors identified. We recently characterized an E3 ligase, the ubiquitin-fold modifier 1 (Ufm1) ligase 1 (Ufl1), as well as its small modifier protein Ufm1, as interactors of the core autophagy-related (ATG) proteins. Mutants of these ufmylation system components are hypersensitive to salt stress and trigger the upregulation of endoplasmic reticulum (ER) stress-responsive genes, as well as the accumulation of ER sheets caused by a defect in reticulophagy. Increased expression of Ufl1, Ufm1 and Ufm1-conjugating enzyme 1 (Ufc1) are also triggered by salt stress in plants. This study identified and demonstrated the participation of ufmylation components in maintaining ER homeostasis by regulating reticulophagy under salt stress in plants.Abbreviations: ATG, autophagy-related; ER, endoplasmic reticulum; LIR, LC3-interacting region; ROS, reactive oxygen species; CDK5RAP3/C53, CDK5 regulatory subunit-associated protein 3; Uba5, Ufm1-activating enzyme 5; Ufc1, Ufm1-conjugating enzyme 1; Ufl1, Ufm1 ligase 1; Ufm1, ubiquitin-fold modifier 1; UPR, unfolded protein response.
    Keywords:  Arabidopsis; ER homeostasis; ER stress; autophagy; reticulophagy; salt stress
    DOI:  https://doi.org/10.1080/15548627.2023.2203985
  13. Cell Commun Signal. 2023 May 04. 21(1): 91
      BACKGROUND: Diabetic encephalopathy (DE) is a complication of type 2 diabetes mellitus (T2DM) that features Alzheimer's disease (AD)-like pathology, which can be degraded by the autophagy-lysosome pathway (ALP). Since transcription factor EB (TFEB) is a master regulator of ALP, TFEB-mediated ALP activation might have a therapeutic effect on DE, but this has yet to be investigated.METHODS: We established T2DM mouse models and cultured HT22 cells under high-glucose (HG) conditions to confirm the role of ALP in DE. To further investigate this, both mice and HT22 cells were treated with 3-methyladenine (3-MA). We also analyzed the content of TFEB in the nucleus and cytoplasm to evaluate its role in ALP. To confirm the effect of TFEB activation at the post-translational level in DE, we used rapamycin to inhibit the mechanistic target of rapamycin (mTOR). We transduced both mice and cells with TFEB vector to evaluate the therapeutic effect of TFEB overexpression on DE. Conversely, we conducted TFEB knockdown to verify its role in DE in another direction.
    RESULTS: We found that T2DM mice experienced compromised cognitive function, while HG-cultured HT22 cells exhibited increased cell apoptosis. Additionally, both T2DM mice and HG-cultured HT22 cells showed impaired ALP and heavier AD-like pathology. This pathology worsened after treatment with 3-MA. We also observed decreased TFEB nuclear translocation in both T2DM mice and HG-cultured HT22 cells. However, inhibiting mTOR with rapamycin or overexpressing TFEB increased TFEB nuclear translocation, enhancing the clearance of ALP-targeted AD-like pathology. This contributed to protection against neuronal apoptosis and alleviation of cognitive impairment. Conversely, TFEB knockdown lessened ALP-targeted AD-like pathology clearance and had a negative impact on DE.
    CONCLUSION: Our findings suggest that impaired ALP is responsible for the aggravation of AD-like pathology in T2DM. We propose that mTOR-dependent TFEB activation and TFEB overexpression are promising therapeutic strategies for DE, as they enhance the clearance of ALP-targeted AD-like pathology and alleviate neuronal apoptosis. Our study provides insight into the underlying mechanisms of DE and offers potential avenues for the development of new treatments for this debilitating complication of T2DM. Video abstract.
    Keywords:  Autophagy-lysosome pathway; Aβ; Diabetic encephalopathy; Neuronal apoptosis; TFEB; p-Tau
    DOI:  https://doi.org/10.1186/s12964-023-01097-1
  14. Nat Commun. 2023 May 04. 14(1): 2573
      Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High levels of free fatty acids in the liver impair hepatic lysosomal acidification and reduce autophagic flux. We investigate whether restoration of lysosomal function in NAFLD recovers autophagic flux, mitochondrial function, and insulin sensitivity. Here, we report the synthesis of novel biodegradable acid-activated acidifying nanoparticles (acNPs) as a lysosome targeting treatment to restore lysosomal acidity and autophagy. The acNPs, composed of fluorinated polyesters, remain inactive at plasma pH, and only become activated in lysosomes after endocytosis. Specifically, they degrade at pH of ~6 characteristic of dysfunctional lysosomes, to further acidify and enhance the function of lysosomes. In established in vivo high fat diet mouse models of NAFLD, re-acidification of lysosomes via acNP treatment restores autophagy and mitochondria function to lean, healthy levels. This restoration, concurrent with reversal of fasting hyperglycemia and hepatic steatosis, indicates the potential use of acNPs as a first-in-kind therapeutic for NAFLD.
    DOI:  https://doi.org/10.1038/s41467-023-38165-6
  15. Cytotherapy. 2023 Apr 29. pii: S1465-3249(23)00093-2. [Epub ahead of print]
      BACKGROUND AIMS: The Akt/mammalian target of rapamycin (mTOR) pathway in macrophages converges inflammatory and metabolic signals from multiple receptors to regulate a cell's survival, metabolism and activation. Although mesenchymal stromal cells (MSCs) are well known to modulate macrophage activation, the effects of MSCs on the Akt/mTOR pathway in macrophages have not been elucidated.METHODS: We herein investigated whether MSCs affect the Akt/mTOR complex 1 (mTORC1) pathway to regulate macrophage polarization.
    RESULTS: Results showed that human bone marrow-derived MSCs induced activation of Akt and its downstream mTORC1 signaling in THP-1-differentiated macrophages in a p62/sequestosome 1-independent manner. Inhibition of Akt or mTORC1 attenuated the effects of MSCs on the suppression of tumor necrosis factor-α and interleukin-12 production and the promotion of interleukin-10 and tumor growth factor-β1 in macrophages stimulated by lipopolysaccharide/ATP. Conversely, activation of Akt or mTORC1 reproduced and potentiated MSC effects on macrophage cytokine production. MSCs with cyclooxygenase-2 knockdown, however, failed to activate the Akt/mTORC1 signaling in macrophages and were less effective in the modulation of macrophage cytokine production than control MSCs.
    CONCLUSIONS: These data demonstrate that MSCs control THP-1-differentiated macrophage activation at least partly through upregulation of the Akt/mTORC1 signaling in a cyclooxygenase-2-dependent manner.
    Keywords:  Akt; THP-1; cyclooxygenase-2; mTORC1; macrophage; mammalian target of rapamycin; mesenchymal stromal cell
    DOI:  https://doi.org/10.1016/j.jcyt.2023.03.013
  16. J Cell Biochem. 2023 May 01.
      The major histocompatibility complex (MHC) class I molecules present peptide antigens to MHC class I-restricted CD8+ T lymphocytes to elicit an effective immune response. The conventional antigen-processing pathway for MHC-I presentation depends on proteasome-mediated peptide generation and peptide loading in the endoplasmic reticulum by members of the peptide loading complex. Recent discoveries in this field highlight the role of alternative MHC-I peptide loading and presentation pathways, one of them being autophagy. Autophagy is a cell-intrinsic degradative pathway that ensures cellular homoeostasis and plays critical roles in cellular immunity. In this review article, we discuss the role of autophagy in MHC class I-restricted antigen presentation, elucidating new findings on the crosstalk of autophagy and ER-mediated MHC-I peptide presentation, dendritic cell-mediated cross-presentation and also mechanisms governing immune evasion. A detailed molecular understanding of the key drivers of autophagy-mediated MHC-I modulation holds promising targets to devise effective measures to improve T cell immunotherapies.
    Keywords:  MHC-I; autophagy; cross-presentation; immune evasion; immunity
    DOI:  https://doi.org/10.1002/jcb.30416
  17. Mol Neurodegener. 2023 May 02. 18(1): 29
      BACKGROUND: Autosomal dominant mutations in α-synuclein, TDP-43 and tau are thought to predispose to neurodegeneration by enhancing protein aggregation. While a subset of α-synuclein, TDP-43 and tau mutations has been shown to increase the structural propensity of these proteins toward self-association, rates of aggregation are also highly dependent on protein steady state concentrations, which are in large part regulated by their rates of lysosomal degradation. Previous studies have shown that lysosomal proteases operate precisely and not indiscriminately, cleaving their substrates at very specific linear amino acid sequences. With this knowledge, we hypothesized that certain coding mutations in α-synuclein, TDP-43 and tau may lead to increased protein steady state concentrations and eventual aggregation by an alternative mechanism, that is, through disrupting lysosomal protease cleavage recognition motifs and subsequently conferring protease resistance to these proteins.RESULTS: To test this possibility, we first generated comprehensive proteolysis maps containing all of the potential lysosomal protease cleavage sites for α-synuclein, TDP-43 and tau. In silico analyses of these maps indicated that certain mutations would diminish cathepsin cleavage, a prediction we confirmed utilizing in vitro protease assays. We then validated these findings in cell models and induced neurons, demonstrating that mutant forms of α-synuclein, TDP-43 and tau are degraded less efficiently than wild type despite being imported into lysosomes at similar rates.
    CONCLUSIONS: Together, this study provides evidence that pathogenic mutations in the N-terminal domain of α-synuclein (G51D, A53T), low complexity domain of TDP-43 (A315T, Q331K, M337V) and R1 and R2 domains of tau (K257T, N279K, S305N) directly impair their own lysosomal degradation, altering protein homeostasis and increasing cellular protein concentrations by extending the degradation half-lives of these proteins. These results also point to novel, shared, alternative mechanism by which different forms of neurodegeneration, including synucleinopathies, TDP-43 proteinopathies and tauopathies, may arise. Importantly, they also provide a roadmap for how the upregulation of particular lysosomal proteases could be targeted as potential therapeutics for human neurodegenerative disease.
    Keywords:  Autophagy; Cathepsin; Lysosome; Mutations; Neurodegeneration; Protease; TDP-43; Tau; α-synuclein
    DOI:  https://doi.org/10.1186/s13024-023-00621-8
  18. J Ethnopharmacol. 2023 May 02. pii: S0378-8741(23)00443-9. [Epub ahead of print] 116575
      ETHNOPHARMACOLOGICAL RELEVANCE: Natural products play a critical role in drug development and is emerging as a potential source of biologically active metabolites for therapeutic intervention, especially in cancer therapy. In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. Understanding the mechanisms of these natural products helps to develop medications for cervical cancer treatments.AIM OF THE STUDY: In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. In this review, we briefly introduce autophagy and systematically describe several classes of natural products implicated in autophagy modulation in cervical cancer, hoping to provide valuable information for the development of cervical cancer treatments based on autophagy.
    MATERIALS AND METHODS: We searched for studies on natural products and autophagy in cervical cancer on the online database and summarized the relationship between natural products and autophagy modulation in cervical cancer.
    RESULTS: Autophagy is a lysosome-mediated catabolic process in eukaryotic cells that plays an important role in a variety of physiological and pathological processes, including cervical cancer. Abnormal expression of cellular autophagy and autophagy-related proteins has been implicated in cervical carcinogenesis, and human papillomavirus infection can affect autophagic activity. Flavonoids, alkaloids, polyphenols, terpenoids, quinones, and other compounds are important sources of natural products that act as anticancer agents. In cervical cancer, natural products exert the anticancer function mainly through the induction of protective autophagy.
    CONCLUSIONS: The regulation of cervical cancer autophagy by natural products has significant advantages in inducing apoptosis, inhibiting proliferation, and reducing drug resistance in cervical cancer.
    Keywords:  Alkaloids; Autophagy; Cervical cancer; Flavonoids; Natural products
    DOI:  https://doi.org/10.1016/j.jep.2023.116575
  19. Cell Rep. 2023 May 01. pii: S2211-1247(23)00459-X. [Epub ahead of print]42(5): 112448
      Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), increasing phosphorylation of RAB GTPases through hyperactive kinase activity. We find that LRRK2-hyperphosphorylated RABs disrupt the axonal transport of autophagosomes by perturbing the coordinated regulation of cytoplasmic dynein and kinesin. In iPSC-derived human neurons, knockin of the strongly hyperactive LRRK2-p.R1441H mutation causes striking impairments in autophagosome transport, inducing frequent directional reversals and pauses. Knockout of the opposing protein phosphatase 1H (PPM1H) phenocopies the effect of hyperactive LRRK2. Overexpression of ADP-ribosylation factor 6 (ARF6), a GTPase that acts as a switch for selective activation of dynein or kinesin, attenuates transport defects in both p.R1441H knockin and PPM1H knockout neurons. Together, these findings support a model where a regulatory imbalance between LRRK2-hyperphosphorylated RABs and ARF6 induces an unproductive "tug-of-war" between dynein and kinesin, disrupting processive autophagosome transport. This disruption may contribute to PD pathogenesis by impairing the essential homeostatic functions of axonal autophagy.
    Keywords:  ARF6; CP: Cell biology; LRRK2; PPM1H; Parkinson’s disease; RAB GTPases; autophagy; axonal transport; cytoplasmic dynein; kinesin
    DOI:  https://doi.org/10.1016/j.celrep.2023.112448
  20. Front Mol Neurosci. 2023 ;16 1154203
      Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is the most common dominantly inherited ataxia. SCA3 is caused by a CAG repeat expansion in the ATXN3 gene that encodes an expanded tract of polyglutamine in the disease protein ataxin-3 (ATXN3). As a deubiquitinating enzyme, ATXN3 regulates numerous cellular processes including proteasome- and autophagy-mediated protein degradation. In SCA3 disease brain, polyQ-expanded ATXN3 accumulates with other cellular constituents, including ubiquitin (Ub)-modified proteins, in select areas like the cerebellum and the brainstem, but whether pathogenic ATXN3 affects the abundance of ubiquitinated species is unknown. Here, in mouse and cellular models of SCA3, we investigated whether elimination of murine Atxn3 or expression of wild-type or polyQ-expanded human ATXN3 alters soluble levels of overall ubiquitination, as well as K48-linked (K48-Ub) and K63-linked (K63-Ub) chains. Levels of ubiquitination were assessed in the cerebellum and brainstem of 7- and 47-week-old Atxn3 knockout and SCA3 transgenic mice, and also in relevant mouse and human cell lines. In older mice, we observed that wild-type ATXN3 impacts the cerebellar levels of K48-Ub proteins. In contrast, pathogenic ATXN3 leads to decreased brainstem abundance of K48-Ub species in younger mice and changes in both cerebellar and brainstem K63-Ub levels in an age-dependent manner: younger SCA3 mice have higher levels of K63-Ub while older mice have lower levels of K63-Ub compared to controls. Human SCA3 neuronal progenitor cells also show a relative increase in K63-Ub proteins upon autophagy inhibition. We conclude that wild-type and mutant ATXN3 differentially impact K48-Ub- and K63-Ub-modified proteins in the brain in a region- and age-dependent manner.
    Keywords:  CAG repeat; Machado-Joseph disease; neurodegeneration; polyglutamine; posttranslational modification; protein homeostasis
    DOI:  https://doi.org/10.3389/fnmol.2023.1154203
  21. Biol Futur. 2023 Apr 30.
      Autophagy represents an intracellular defense mechanism equipped within each eukaryotic cells to enable them to cope with variety of physical, chemical, and biological stresses. This mechanism helps to restore the homeostasis and preserve the cellular integrity and function of the cells. In these conditions, such as hypoxia, nutrient deprivation, inhibition of protein synthesis or microbial attack, the process of autophagy is upregulated to maintain cellular homeostasis. The role of autophagy in cancer is an intriguing topic which needs further exploration. This process of autophagy has been many times referred as a double-edged sword in the process of tumorigenesis. In the initial stages, it may act as a tumor suppressor and enable to quench the damaged organelles and harmful molecules generated. In more advanced stages, autophagy has been shown to act as a tumor-promoting system as it may help the cancer cells to cope better with stressful microenvironments. Besides this, autophagy has been associated with development of resistance to anticancer drugs as well as promoting the immune evasion in cancer cells, representing a serious obstacle in cancer treatment and its outcome. Also, autophagy is associated with hallmarks of cancer that may lead to activation of invasion and metastasis. The information on this twin role needs further exploration and deeper understanding of the pathways involved. In this review, we discuss the various aspects of autophagy during tumor development, from early to late stages of tumor growth. Both the protective role of autophagy in preventing tumor growth and the underlying mechanisms adopted with evidence from past studies have been detailed. Further, the role of autophagy in conferring resistance to distinct lung cancer treatment and immune shielding properties has also been discussed. This is essential for further improving on treatment outcome and success rates.
    Keywords:  Autophagy; Lung cancer; Tumor; Tumorigenesis
    DOI:  https://doi.org/10.1007/s42977-023-00165-4
  22. Cell Biol Int. 2023 May 03.
      Although starvation stress can alter the homeostasis of mitochondria and promote autophagy, there is still a lack of research focusing on the connection between them. In this study, we found that, accompanied by the upregulation of autophagy flux, the membrane mitochondrial potential (MMP), the content of reactive oxygen species (ROS), the production of ATP, and the copy number of mitochondrial DNA (mt-DNA) were changed when limiting amino acids supply. We screened and analyzed altered genes related to mitochondrial homeostasis under starvation stress and verified that the expression of mitochondrial transcription factor A (TFAM) was prominently upregulated. Inhibition of TFAM led to the change of mitochondrial function and homeostasis, caused the decrease of SQSTM1 mRNA stability and ATG101 protein level and restricted the autophagy process of cells under amino acid deficient conditions. In addition, the TFAM knockdown and starvation treatment aggravated the DNA damage and reduced proliferation rate of tumor cells. Therefore, our data shows the correlation between mitochondria homeostasis and autophagy, reveals the effect of TFAM on autophagy flux under starvation stress and provides experimental basis for the combined starvation therapy targeting mitochondria to inhibit tumor growth.
    Keywords:  TFAM; autophagy; cell proliferation; homeostasis; mitochondria
    DOI:  https://doi.org/10.1002/cbin.12031
  23. Curr Med Chem. 2023 May 03.
      Autophagy is a significant catabolic procedure that increases in stressful conditions. This mechanism is mostly triggered after damage to the organelles, the presence of unnatural proteins, and nutrient recycling in reaction to these stresses. One of the key points in this article is that cleaning and preserving damaged organelles and accumulated molecules through autophagy in normal cells helps prevent cancer. Since dysfunction of autophagy is associated with various diseases, including cancer, it has a dual function in tumor suppression and expansion. It has newly become clear that the regulation of autophagy can be used for the treatment of breast cancer, which has a promising effect of increasing the efficiency of anticancer treatment in a tissue- and cell-type-specific manner by affecting the fundamental molecular mechanisms. Regulation of autophagy and its function in tumorigenesis is a vital part of modern anticancer techniques. This study discusses the current advances related to the mechanisms that describe essential modulators of autophagy involved in the metastasis of cancers and the development of new breast cancer treatments.
    Keywords:  anticancer techniques; autophagy; breast cancer; cancer therapy; metastasis
    DOI:  https://doi.org/10.2174/0929867330666230503145319
  24. Int Immunopharmacol. 2023 Apr 29. pii: S1567-5769(23)00525-8. [Epub ahead of print]119 110204
      Due to their simplicity and reliability, random-pattern skin flaps are commonly utilized in surgical reconstruction to repair cutaneous wounds. However, the post-operative necrosis frequently happens because of the ischemia and high-level of oxidative stress of random skin flaps, which can severely affect the healing outcomes. Earlier evidence has shown promising effect of Nuciferine (NF) on preventing hydrogen peroxide (H2O2)-induced fibroblast senescence and ischemic injury, however, whether it can function on promoting ischemic flap survival remains unknown. In this work, using network pharmacology analysis, it was possible to anticipate the prospective targets of NF in the context of ischemia. The results revealed that NF treatment minimized H2O2-induced cellular dysfunction of human umbilical vein endothelial cells (HUVECs), and also improved flap survival through strengthening angiogenesis and alleviating oxidative stress, inflammation and apoptosis in vivo. These outcomes should be attributed to TFEB-mediated enhancement of autophagy-lysosomal degradation via the AMPK-mTOR signaling pathway, whilst the restriction of autophagy stimulation with 3MA effectively diminished the above advantages of NF treatment. The increased nuclear translocation of TFEB not only restored lysosome function, but also promoted autophagosome-lysosome fusion, eventually restoring the inhibited autophagic flux and filling the high energy levels. The outcomes of our research can provide potent proof for the application of NF in the therapy of vascular insufficiency associated disorders, including random flaps.
    Keywords:  Angiogenesis; Autophagy-lysosomal pathway; Oxidative stress; Random skin flaps; TFEB
    DOI:  https://doi.org/10.1016/j.intimp.2023.110204
  25. Sci Rep. 2023 Apr 29. 13(1): 7037
      mTOR complex 2 (mTORC2) has been implicated as a key regulator of glioblastoma cell migration. However, the roles of mTORC2 in the migrational control process have not been entirely elucidated. Here, we elaborate that active mTORC2 is crucial for GBM cell motility. Inhibition of mTORC2 impaired cell movement and negatively affected microfilament and microtubule functions. We also aimed to characterize important players involved in the regulation of cell migration and other mTORC2-mediated cellular processes in GBM cells. Therefore, we quantitatively characterized the alteration of the mTORC2 interactome under selective conditions using affinity purification-mass spectrometry in glioblastoma. We demonstrated that changes in cell migration ability specifically altered mTORC2-associated proteins. GSN was identified as one of the most dynamic proteins. The mTORC2-GSN linkage was mostly highlighted in high-grade glioma cells, connecting functional mTORC2 to multiple proteins responsible for directional cell movement in GBM. Loss of GSN disconnected mTORC2 from numerous cytoskeletal proteins and affected the membrane localization of mTORC2. In addition, we reported 86 stable mTORC2-interacting proteins involved in diverse molecular functions, predominantly cytoskeletal remodeling, in GBM. Our findings might help expand future opportunities for predicting the highly migratory phenotype of brain cancers in clinical investigations.
    DOI:  https://doi.org/10.1038/s41598-023-33872-y
  26. Front Mol Neurosci. 2023 ;16 1168948
      Background: Autophagy is a conserved physiological intracellular mechanism responsible for the degradation and recycling of cytoplasmic constituents (e.g., damaged organelles, and protein aggregates) to maintain cell homeostasis. Aberrant autophagy has been observed in neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Huntington's Disease (HD), and recently aberrant autophagy has been associated with mood disorders, such as depression. Several in vitro methods have been developed to study the complex and tightly regulated mechanisms of autophagy. In vitro methods applied to autophagy research are used to identify molecular key players involved in dysfunctional autophagy and to screen autophagy regulators with therapeutic applications in neurological diseases and mood disorders. Therefore, the aims of this narrative review are (1) to compile information on the cell-based methods used in autophagy research, (2) to discuss their application, and (3) to create a catalog of traditional and novel in vitro methods applied in neurodegenerative diseases and depression.Methods: Pubmed and Google Scholar were used to retrieve relevant in vitro studies on autophagy mechanisms in neurological diseases and depression using a combination of search terms per mechanism and disease (e.g., "macroautophagy" and "Alzheimer's disease"). A total of 37 studies were included (14 in PD, 8 in AD, 5 in ALS, 5 in %, and 5 in depression).
    Results: A repertoire of traditional and novel approaches and techniques was compiled and discussed. The methods used in autophagy research focused on the mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy. The in vitro tools presented in this review can be applied to explore pathophysiological mechanisms at a molecular level and to screen for potential therapeutic agents and their mechanism of action, which can be of great importance to understanding disease biology and potential therapeutic options in the context of neurodegenerative disorders and depression.
    Conclusion: This is the first review to compile, discuss, and provide a catalog of traditional and novel in vitro models applied to neurodegenerative disorders and depression.
    Keywords:  autophagy; cell-based assays; depression; mood disorders; neurodegenerative disorders
    DOI:  https://doi.org/10.3389/fnmol.2023.1168948
  27. JCI Insight. 2023 May 04. pii: e162255. [Epub ahead of print]
      Elevation of glucagon levels and increase in alpha cell proliferation is associated with states of hyperglycemia in diabetes. A better understanding of the molecular mechanisms governing glucagon secretion could have major implications in understanding abnormal responses to hypoglycemia in diabetes patients and provide novel avenues for diabetes management. Our previous studies have highlighted the role of nutrient signaling via mTOR complex 1 (mTORC1) regulation that controls glucagon secretion and alpha cell mass and that hyperglucagonemia can improve glucose homeostasis by diminishing glucagon action in the liver. However, it is unclear if short-term effects of mTORC1 activation are sufficient to induce glucagon secretion without changes in alpha cell mass and whether short-term hyperglucagonemia reduces liver glucagon action in a reversible manner. Using mice with inducible induction of the regulator of the mTORC1 complex (Rheb) in alpha cells (αRhebTg), we showed that short-term activation of mTORC1 signaling is sufficient to induce hyperglucagonemia as a result of increased glucagon secretion. Hyperglucagonemia in the αRhebTg was also associated with an increase in alpha cell size and mass expansion. This model allowed us to identify the effects of chronic and short-term hyperglucagonemia on glucose homeostasis by regulating glucagon signaling in the liver. Short-term hyperglucagonemia impaired glucose tolerance, which was reversible over time. Decrease in liver glucagon effects in αRhebTg mice was associated with reduced expression of the glucagon receptor (GCGR) and genes involved in gluconeogenesis, amino acid metabolism, and urea production. However, only genes regulating gluconeogenesis returned to baseline upon improvement of glycemia. Overall, these studies demonstrate that hyperglucagonemia exerts a biphasic response on glucose metabolism: short-term hyperglucagonemia leads to glucose intolerance, whereas chronic exposure to glucagon generates decrease on hepatic glucagon action along with improved glucose tolerance.
    Keywords:  Endocrinology; Glucose metabolism; Islet cells; Metabolism
    DOI:  https://doi.org/10.1172/jci.insight.162255
  28. J Cardiovasc Transl Res. 2023 May 01.
      It has been shown that SGLT2 suppresses atherosclerosis (AS). Recent studies indicate that autophagy widely participates in atherogenesis. This study aimed to assess the effect of canagliflozin (CAN) on atherogenesis via autophagy. Macrophages and ApoE - / - mice were used in this study. In macrophages, the results showed that CAN promoted LC3II expression and autophagosome formation. Furthermore, the cholesterol efflux assay demonstrated that CAN enhanced cholesterol efflux from macrophages via autophagy, resulting in lower lipid droplet concentrations in macrophages. The western blot revealed that CAN regulated autophagy via the AMPK/ULK1/Beclin1 signaling pathway. CAN resulted in increased macrophage autophagy in atherosclerotic plaques of ApoE - / - mice, confirming that CAN could inhibit the progression of AS via promoting macrophage autophagy. The current study found that CAN reduced the production of atherosclerotic lesions, which adds to our understanding of how SGLT2 inhibitors function to delay the progression of AS.
    Keywords:  Atherosclerosis; Autophagy; Macrophage; SGLT2 inhibitor
    DOI:  https://doi.org/10.1007/s12265-023-10390-w
  29. Heliyon. 2023 Apr;9(4): e15003
      A previous study from our laboratory observed the protective effects of far-infrared irradiation (FIR) on bone marrow-derived stem cells (BMSCs) against oxidative stress. However, it remains unknown precisely how FIR influences BMSC survival. We identify an unexpected route among the expression of MITF, BCL2, mTOR, and exosome in FIR-preconditioned BMSCs. MITF siRNA demonstrated that loss of MITF expression not only inhibited cell proliferation but also reduced the FIR-mediated expression of mTOR, BCL2, and exosome. mTOR signaling pathways have been implicated in cell growth, proliferation, and survival. We also found that rapamycin, a potent and selective inhibitor of mTOR, when combined with MITF siRNA, repressed FIR-mediated CD63 and BCL2 expression. In addition, FIR-preconditioned BMSCs demonstrated more tolerance in multiple stressful environments than untreated BMSCs. The elevated exosomes in conditioned medium derived from FIR-preconditioned BMSCs also repaired H9c2 cells that sustained cellular damage after subjected to an array of environmental stress conditions. Taken together, these results reveal a possible mechanism about how FIR-preconditioned BMSCs and its conditioned media could contribute to cellular resilience during environmental changes via MITF-Akt-mTOR associated with exosome manufacture. FIR preconditioning could thus complement and improve therapeutic applications of BMSCs on outcomes of various disorders.
    Keywords:  Akt/mTOR/exosome manufacture; Bone marrow-derived mesenchymal/stromal cells; Cellular resilience; Far-infrared irradiation; MITF
    DOI:  https://doi.org/10.1016/j.heliyon.2023.e15003
  30. Biol Chem. 2023 May 05.
      Atg18, Atg21 and Hsv2 are homologous β-propeller proteins binding to PI3P and PI(3,5)P2. Atg18 is thought to organize lipid transferring protein complexes at contact sites of the growing autophagosome (phagophore) with both the ER and the vacuole. Atg21 is restricted to the vacuole phagophore contact, where it organizes part of the Atg8-lipidation machinery. The role of Hsv2 is less understood, it partly affects micronucleophagy. Atg18 is further involved in regulation of PI(3,5)P2 synthesis. Recently, a novel Atg18-retromer complex and its role in vacuole homeostasis and membrane fission was uncovered.
    Keywords:  PtdIns3P; autophagosome biogenesis; membrane fission; retromer; vacuole fragmentation
    DOI:  https://doi.org/10.1515/hsz-2023-0126
  31. PLoS One. 2023 ;18(5): e0281496
      Diabetes mellitus (DM) is one of the most researched metabolic diseases worldwide. It leads to extensive complications such as cardiovascular disease, nephropathy, retinopathy, and peripheral and central nervous system through an inability to produce or respond to insulin. Although oxidative stress-mediated mitophagy has been reported to play an important role in the pathogenesis of DM, specific studies are still lacking as well as remain highly controversial. Here, we found that Parkin-mediated mitophagy in pancreatic β cells under streptozotocin (STZ)-diabetic stress was induced by Polo-like kinase 3 (Plk3) and inhibited by the transcription factor Forkhead Box O3A (FOXO3A). STZ stress induces mitochondrial recruitment of Parkin through Plk3-mediated mitochondrial reactive oxygen species (ROS) generation, which causes pancreatic cell damage. Conversely, FOXO3A acts as negative feedback to prevent diabetic stress by inhibiting Plk3. Meanwhile, antioxidants including N-acetylcysteine (NAC) and natural COA water scientifically block these mitochondrial ROS and mitochondrial recruitment of Parkin by inhibiting Plk3. Through a 3D organoid ex vivo model, we confirmed that not only ROS inhibitors but also mitophagy inhibitory factors such as 3-MA or Parkin deletion can compensate for pancreatic cell growth and insulin secretion under STZ diabetic stress. These findings suggest that the Plk3-mtROS-PINK1-Parkin axis is a novel mitophagy process that inhibits pancreatic β-cell growth and insulin secretion and FOXO3A and antioxidants may provide new alternatives for effective diabetes treatment strategies in the future.
    DOI:  https://doi.org/10.1371/journal.pone.0281496
  32. Chem Asian J. 2023 May 01. e202300308
      Mitochondria are the powerhouse of the cell and function at pH ~8.0. Dysfunctions of mitochondria, includes mitochondrial damage, leading to pH alteration. Hence, researchers aim to develop efficient pH probes for tracking mitochondrial pH dynamics. Herein, we developed a PET-based fluorescent probe for pH monitoring during mitochondrial dysfunctions. Three derivatives were synthesized with a variable spacer's length in pentacyclic pyridinium fluorophores (PM-C2, PM-C3, and PM-C6). An efficient electron transfers from the receptor (tertiary amine) was observed in the case of PM-C2 compared to the other two derivatives. This PET process was inhibited when tertiary amine was protonated in acidic pH. However, PM-C3 showed minimal fluorescence intensity at similar conditions and almost negligible change in case of PM-C6, suggesting poor PET process for both the derivatives. Furthermore, DFT/TD-DFT quantum chemical calculation well supported this optical phenomena and PET process. Biocompatible, photostable, and mitochondria-specific PM-C2 could monitor pH dynamics during mitochondrial damage which were engulfed by lysosome, also known as mitophagy. This mitophagy process were induced by rapamycin and starvation, which can be monitored by turn-on fluorescence enhancement. This process was further validated by tracking Parkin-protein translocation from cytoplasm to damaged mitochondria using our developed probe.
    Keywords:  Fluorophore; Mitophagy; PET; Turn on probe; fluorescence imaging
    DOI:  https://doi.org/10.1002/asia.202300308
  33. Front Cell Dev Biol. 2023 ;11 1158279
      Graves' ophthalmopathy (GO) is an inflammatory autoimmune disease that affects the eyes. It can significantly alter the quality of life in patients because of its distinctive pathological appearance and the effect on vision. To date, the exact pathological mechanism of GO has not been explicitly discovered. However, several studies have associated autophagy with this disease. Autophagy is a catabolic process that helps maintain homeostasis in all organisms by protecting the cells and tissues from various endogenous and exogenous stress factors. Based on our results, patients affected with GO have comparatively elevated levels of autophagy, which critically affects the pathological mechanism of the GO. In this review, we have summarized the autophagy mechanism in the pathogenesis of GO.
    Keywords:  adipogenesis; autophagy; glycosaminoglycan; graves’ ophthalmopathy; inflammation
    DOI:  https://doi.org/10.3389/fcell.2023.1158279
  34. Biochim Biophys Acta Mol Basis Dis. 2023 May 03. pii: S0925-4439(23)00108-4. [Epub ahead of print] 166742
      Spermatogenesis is a complex process in the testis and is a cornerstone of male infertility. The abundance of unsaturated fatty acid and high cell division rate make male germs cells prone to DNA deterioration. ROS-mediated oxidative stress triggers DNA damage, autophagy, and apoptosis in male germ cells, which are critical causative factors that lead to male infertility. The complex connection and molecular crosstalk between apoptosis and autophagy is seen at multifaceted levels that interconnect the signaling pathways of these two processes. Multilevel interaction between apoptosis and autophagy is a seamless state of survival and death in response to various stressors. Interaction between multiple genes and proteins such as the mTor signaling pathway, Atg12 proteins, and the death adapter proteins, such as Beclin 1, p53, and Bcl-2 family proteins, validates such a link between these two phenomena. Testicular cells being epigenetically different from somatic cells, undergo numerous significant epigenetic transitions, and ROS modulates the epigenetic framework of mature sperm. Epigenetic deregulation of apoptosis and autophagy under oxidative stress conditions can cause sperm cell damage. The current review recapitulates the current role of prevailing stressors that generate oxidative stress leading to the induction of apoptosis and autophagy in the male reproductive system. Considering the pathophysiological consequences of ROS-mediated apoptosis and autophagy, a combinatorial approach, including apoptosis inhibition and autophagy activation, a therapeutic strategy to treat male idiopathic infertility. Understanding the crosslink between apoptosis and autophagy under stress conditions in male germ cells may play an essential role in developing therapeutic strategies to treat infertility.
    Keywords:  Apoptosis; Autophagy; Infertility; Oxidative stress; Spermatogenesis
    DOI:  https://doi.org/10.1016/j.bbadis.2023.166742
  35. Trends Microbiol. 2023 Apr 27. pii: S0966-842X(23)00113-0. [Epub ahead of print]
      Chronic infection with Helicobacter pylori is the primary risk factor for the development of gastric cancer. Hindering our ability to comprehend the precise role of autophagy during H. pylori infection is the complexity of context-dependent autophagy signaling pathways. Recent and ongoing progress in understanding H. pylori virulence allows new frontiers of research for the crosstalk between autophagy and H. pylori. Novel approaches toward discovering autophagy signaling networks have further revealed their critical influence on the structure of gut microbiota and the metabolome. Here we intend to present a holistic view of the perplexing role of autophagy in H. pylori pathogenesis and carcinogenesis. We also discuss the intermediate role of autophagy in H. pylori-mediated modification of gut inflammatory responses and microbiota structure.
    Keywords:  Helicobacter pylori; anticancer therapy; autophagy; gastric cancer; gut microbiota
    DOI:  https://doi.org/10.1016/j.tim.2023.04.001
  36. Transl Psychiatry. 2023 May 03. 13(1): 143
      FIP200 plays important roles in homeostatic processes such as autophagy and signaling pathways such as focal adhesion kinase (FAK) signaling. Furthermore, genetic studies suggest an association of FIP200 mutations with psychiatric disorders. However, its potential connections to psychiatric disorders and specific roles in human neurons are not clear. We set out to establish a human-specific model to study the functional consequences of neuronal FIP200 deficiency. To this end, we generated two independent sets of isogenic human pluripotent stem cell lines with homozygous FIP200KO alleles, which were then used for the derivation of glutamatergic neurons via forced expression of NGN2. FIP200KO neurons exhibited pathological axonal swellings, showed autophagy deficiency, and subsequently elevated p62 protein levels. Moreover, monitoring the electrophysiological activity of neuronal cultures on multi-electrode arrays revealed that FIP200KO resulted in a hyperactive network. This hyperactivity could be abolished by glutamatergic receptor antagonist CNQX, suggesting a strengthened glutamatergic synaptic activation in FIP200KO neurons. Furthermore, cell surface proteomic analysis revealed metabolic dysregulation and abnormal cell adhesion-related processes in FIP200KO neurons. Interestingly, an ULK1/2-specific autophagy inhibitor could recapitulate axonal swellings and hyperactivity in wild-type neurons, whereas inhibition of FAK signaling was able to normalize the hyperactivity of FIP200KO neurons. These results suggest that impaired autophagy and presumably also disinhibition of FAK can contribute to the hyperactivity of FIP200KO neuronal networks, whereas pathological axonal swellings are primarily due to autophagy deficiency. Taken together, our study reveals the consequences of FIP200 deficiency in induced human glutamatergic neurons, which might, in the end, help to understand cellular pathomechanisms contributing to neuropsychiatric conditions.
    DOI:  https://doi.org/10.1038/s41398-023-02432-3
  37. Cell Signal. 2023 May 02. pii: S0898-6568(23)00108-0. [Epub ahead of print] 110694
      BACKGROUND: Diabetes mellitus (DM) microenvironment will accelerate the accumulation of Advanced glycation end products (AGEs), adipose-derived stem cells (ASCs) have poor osteogenesis in the DM microenvironment. Studies suggest autophagy plays a vital role in osteogenesis, but the mechanism of the altered osteogenic potential of ASCs has not been elucidated. Bone tissue engineering by ASCs is widely used in the treatment of bone defects with diabetic osteoporosis (DOP). Therefore, it is meaningful to explore the effect of AGEs on the osteogenic differentiation potential of ASCs and its potential mechanism for the repair of bone defects in DOP.MATERIALS AND METHODS: ASCs in C57BL/6 mice were isolated, cultured, then treated with AGEs, subsequently, cell viability and proliferation were detected through Cell Counting Kit 8 assay. 3-Methyladenine (3-MA), an autophagic inhibitor used to inhibit autophagic levels. Rapamycin (Rapa), an autophagy activator that further activated autophagy levels by inhibiting mTOR.The osteogenesis and autophagy changes of ASCs were analyzed by flow cytometry, qPCR, western blot, immunofluorescence, alkaline phosphatase (ALP) and alizarin red staining.
    RESULTS: AGEs reduced the autophagy level and osteogenic potential of ASCs. After 3-MA reduced autophagy, the osteogenic potential of ASCs also decreased. AGEs co-treatment with 3-MA, the levels of osteogenesis and autophagy reduced more significantly. When autophagy was activated by Rapa, it was found that it could rescue the reduced osteogenic potential of AGEs.
    CONCLUSIONS: AGEs reduce the osteogenic differentiation potential of ASCs through autophagy, and may provide a reference for the treatment of bone defects with diabetes osteoporosis.
    Keywords:  Adipose-derived stem cells; Advanced glycation end products; Autophagy; Osteogenic potential
    DOI:  https://doi.org/10.1016/j.cellsig.2023.110694
  38. Cell Cycle. 2023 May 03. 1-10
      The retinoblastoma tumor suppressor (RB) prevents G1 to S cell cycle transition by inhibiting E2F activity. This function requires that RB remains un- or underphosphorylated (the so-called active forms of RB). Recently, we showed that active forms of RB cause widespread changes in nuclear architecture that are visible under a microscope. These phenotypes did not correlate with cell cycle arrest or repression of the E2F transcriptional program, but appeared later, and were associated with the appearance of autophagy or in IMR-90 cells with senescence markers. In this perspective, we describe the relative timing of these RB-induced events and discuss the mechanisms that may underlie RB-induced chromatin dispersion. We consider the relationship between RB-induced dispersion, autophagy, and senescence and the potential connection between dispersion and cell cycle exit.
    Keywords:  Cell cycle; autophagy; retinoblastoma; senescence
    DOI:  https://doi.org/10.1080/15384101.2023.2206352
  39. J Exp Clin Cancer Res. 2023 May 03. 42(1): 110
      BACKGROUND: Ufm1-specific ligase 1 (Ufl1) and Ufm1-binding protein 1 (Ufbp1), as putative targets of ubiquitin-fold modifier 1 (Ufm1), have been implicated in several pathogenesis-related signaling pathways. However, little is known about their functional roles in liver disease.METHODS: Hepatocyte-specific Ufl1Δ/Δhep and Ufbp1Δ/Δhep mice were used to study their role in liver injury. Fatty liver disease and liver cancer were induced by high-fat diet (HFD) and diethylnitrosamine (DEN) administration, respectively. iTRAQ analysis was employed to screen for downstream targets affected by Ufbp1 deletion. Co-immunoprecipitation was used to determine the interactions between the Ufl1/Ufbp1 complex and the mTOR/GβL complex.
    RESULTS: Ufl1Δ/Δhep or Ufbp1Δ/Δhep mice exhibited hepatocyte apoptosis and mild steatosis at 2 months of age and hepatocellular ballooning, extensive fibrosis, and steatohepatitis at 6-8 months of age. More than 50% of Ufl1Δ/Δhep and Ufbp1Δ/Δhep mice developed spontaneous hepatocellular carcinoma (HCC) by 14 months of age. Moreover, Ufl1Δ/Δhep and Ufbp1Δ/Δhep mice were more susceptible to HFD-induced fatty liver and DEN-induced HCC. Mechanistically, the Ufl1/Ufbp1 complex directly interacts with the mTOR/GβL complex and attenuates mTORC1 activity. Ablation of Ufl1 or Ufbp1 in hepatocytes dissociates them from the mTOR/GβL complex and activates oncogenic mTOR signaling to drive HCC development.
    CONCLUSIONS: These findings reveal the potential role of Ufl1 and Ufbp1 as gatekeepers to prevent liver fibrosis and subsequent steatohepatitis and HCC development by inhibiting the mTOR pathway.
    Keywords:  Fatty liver; HCC; Hepatic fibrosis; Ufl1/Ufbp1; mTOR
    DOI:  https://doi.org/10.1186/s13046-023-02681-6
  40. Adv Biol (Weinh). 2023 May 02. e2300095
      Certain metabolic interventions such as caloric restriction, fasting, exercise, and a ketogenic diet extend lifespan and/or health span. However, their benefits are limited and their connections to the underlying mechanisms of aging are not fully clear. Here, these connections are explored in terms of the tricarboxylic acid (TCA) cycle (Krebs cycle, citric acid cycle) to suggest reasons for the loss of effectiveness and ways of overcoming it. Specifically, the metabolic interventions deplete acetate and likely reduce the conversion of oxaloacetate to aspartate, thereby inhibiting the mammalian target of rapamycin (mTOR) and upregulating autophagy. Synthesis of glutathione may provide a high-capacity sink for amine groups, facilitating autophagy, and prevent buildup of alpha-ketoglutarate, supporting stem cell maintenance. Metabolic interventions also prevent the accumulation of succinate, thereby slowing DNA hypermethylation, facilitating the repair of DNA double-strand breaks, reducing inflammatory and hypoxic signaling, and lowering reliance on glycolysis. In part through these mechanisms, metabolic interventions may decelerate aging, extending lifespan. Conversely, with overnutrition or oxidative stress, these processes function in reverse, accelerating aging and impairing longevity. Progressive damage to aconitase, inhibition of succinate dehydrogenase, and downregulation of hypoxia-inducible factor-1α, and phosphoenolpyruvate carboxykinase (PEPCK) emerge as potentially modifiable reasons for the loss of effectiveness of metabolic interventions.
    Keywords:  DNA methylation; DNA repair; aspartate; autophagy; hypoxia; succinate
    DOI:  https://doi.org/10.1002/adbi.202300095
  41. EMBO Rep. 2023 May 04. e55439
      Adult autologous human epidermal stem cells can be extensively expanded ex vivo for cell and gene therapy. Identifying the mechanisms involved in stem cell maintenance and defining culture conditions to maintain stemness is critical, because an inadequate environment can result in the rapid conversion of stem cells into progenitors/transient amplifying cells (clonal conversion), with deleterious consequences on the quality of the transplants and their ability to engraft. Here, we demonstrate that cultured human epidermal stem cells respond to a small drop in temperature through thermoTRP channels via mTOR signaling. Exposure of cells to rapamycin or a small drop in temperature induces the nuclear translocation of mTOR with an impact on gene expression. We also demonstrate by single-cell analysis that long-term inhibition of mTORC1 reduces clonal conversion and favors the maintenance of stemness. Taken together, our results demonstrate that human keratinocyte stem cells can adapt to environmental changes (e.g., small variations in temperature) through mTOR signaling and constant inhibition of mTORC1 favors stem cell maintenance, a finding of high importance for regenerative medicine applications.
    Keywords:  TRP channels; keratinocyte stem cells; mTOR; microenvironment; temperature
    DOI:  https://doi.org/10.15252/embr.202255439
  42. Arch Toxicol. 2023 May 02.
      Reactive oxygen species (ROS) mediate lipid peroxidation and produce 4-hydroxynonenal and other related products, which play an important role in the process of cell death, including apoptosis, autophagy, and ferroptosis. Lipid peroxidation of phospholipid bilayers can promote mitochondrial apoptosis, endoplasmic reticulum stress, and other complex molecular signaling pathways to regulate apoptosis. Lipid peroxidation and its products also act at different stages of autophagy, affecting the formation of autophagosomes and the recruitment of downstream proteins. In addition, we discuss the important role of ROS and lipid peroxides in ferroptosis and the regulatory role of nuclear factor erythroid 2-related factor 2 in ferroptosis under a background of oxidation. Finally, from the perspectives of promotion, inhibition, transformation, and common upstream molecules, we summarized the crosstalk among apoptosis, autophagy, and ferroptosis in the context of ROS. Our review discusses the role of ROS and lipid peroxidation in apoptosis, autophagy, and ferroptosis and their possible crosstalk mechanisms, so as to provide new insights and directions for the study of diseases related to pathological cell death. This review also has referential significance for studying the exact mechanism of ferroptosis mediated by lipid peroxidation.
    Keywords:  Apoptosis; Autophagy; Ferroptosis; Lipid peroxides; Reactive oxygen species
    DOI:  https://doi.org/10.1007/s00204-023-03476-6