mBio. 2023 Feb 01.
e0355822
Almost all bactericidal drugs require bacterial replication and/or metabolic activity for their killing activity. When these processes are inhibited by bacteriostatic antibiotics, bacterial killing is significantly reduced. One notable exception is the lipopeptide antibiotic daptomycin, which has been reported to efficiently kill growth-arrested bacteria. However, these studies employed only short periods of growth arrest (<1 h), which may not fully represent the duration of growth arrest that can occur in vivo. We found that a growth inhibitory concentration of the protein synthesis inhibitor tetracycline led to a time-dependent induction of daptomycin tolerance in S. aureus, with an approximately 100,000-fold increase in survival after 16 h of growth arrest, relative to exponential-phase bacteria. Daptomycin tolerance required glucose and was associated with increased production of the cell wall polymers peptidoglycan and wall-teichoic acids. However, while the accumulation of peptidoglycan was required for daptomycin tolerance, only a low abundance of wall teichoic acid was necessary. Therefore, whereas tolerance to most antibiotics occurs passively due to a lack of metabolic activity and/or replication, daptomycin tolerance arises via active cell wall remodelling. IMPORTANCE Understanding why antibiotics sometimes fail to cure infections is fundamental to improving treatment outcomes. This is a major challenge when it comes to Staphylococcus aureus because this pathogen causes several different chronic or recurrent infections. Previous work has shown that a lack of replication, as often occurs during infection, makes bacteria tolerant of most bactericidal antibiotics. However, one antibiotic that has been reported to kill nonreplicating bacteria is daptomycin. In this work, we show that the growth arrest of S. aureus does in fact lead to daptomycin tolerance, but it requires time, nutrients, and biosynthetic pathways, making it distinct from other types of antibiotic tolerance that occur in nonreplicating bacteria.
Keywords: MRSA; Staphylococcus aureus; antibiotic tolerance; daptomycin; growth arrest; peptidoglycan