Microbiol Res. 2024 May 27. pii: S0944-5013(24)00183-6. [Epub ahead of print]285 127782
As a major human and animal pathogen, Staphylococcus aureus can attach to medical implants (abiotic surface) or host tissues (biotic surface), and further establish robust biofilms which enhances resistance and persistence to host immune system and antibiotics. Cell-wall-anchored proteins (CWAPs) covalently link to peptidoglycan, and largely facilitate the colonization of S. aureus on various surfaces (including adhesion and biofilm formation) and invasion into host cells (including adhesion, immune evasion, iron acquisition and biofilm formation). During biofilm formation, CWAPs function in adhesion, aggregation, collagen-like fiber network formation, and consortia formation. In this review, we firstly focus on the structural features of CWAPs, including their intracellular function and interactions with host cells, as well as the functions and ligand binding of CWAPs in different stages of S. aureus biofilm formation. Then, the roles of CWAPs in different biofilm processes with regards in development of therapeutic approaches are clarified, followed by the association between CWAPs genes and clonal lineages. By touching upon these aspects, we hope to provide comprehensive knowledge and clearer understanding on the CWAPs of S. aureus and their roles in biofilm formation, which may further aid in prevention and treatment infection and vaccine development.
Keywords: Abiotic and biotic surface; Biofilm; Cell-wall-anchored proteins; Colonization; Staphylococcus aureus