Biochem Biophys Res Commun. 2024 Jul 08. pii: S0006-291X(24)00875-1. [Epub ahead of print]730 150339
The tumor microenvironment (TME) assumes a pivotal role in the treatment of oncological diseases, given its intricate interplay of diverse cellular components and extracellular matrices. This dynamic ecosystem poses a serious challenge to traditional research methods in many ways, such as high research costs, inefficient translation, poor reproducibility, and low modeling success rates. These challenges require the search for more suitable research methods to accurately model the TME, and the emergence of 3D bioprinting technology is transformative and an important complement to these traditional methods to precisely control the distribution of cells, biomolecules, and matrix scaffolds within the TME. Leveraging digital design, the technology enables personalized studies with high precision, providing essential experimental flexibility. Serving as a critical bridge between in vitro and in vivo studies, 3D bioprinting facilitates the realistic 3D culturing of cancer cells. This comprehensive article delves into cutting-edge developments in 3D bioprinting, encompassing diverse methodologies, biomaterial choices, and various 3D tumor models. Exploration of current challenges, including limited biomaterial options, printing accuracy constraints, low reproducibility, and ethical considerations, contributes to a nuanced understanding. Despite these challenges, the technology holds immense potential for simulating tumor tissues, propelling personalized medicine, and constructing high-resolution organ models, marking a transformative trajectory in oncological research.
Keywords: 3D bioprinting technology; Cancer; The tumor microenvironment; Tumor models