bims-cadres Biomed News
on Cancer drug resistance
Issue of 2022–10–09
nine papers selected by
Rana Gbyli, Yale University



  1. Cancer Res. 2022 Oct 04. 82(19): 3516-3531
      Emerging evidence demonstrates that the dysregulated metabolic enzymes can accelerate tumorigenesis and progression via both metabolic and nonmetabolic functions. Further elucidation of the role of metabolic enzymes in EGFR inhibitor resistance and metastasis, two of the leading causes of death in lung adenocarcinoma, could help improve patient outcomes. Here, we found that aberrant upregulation of phosphoserine aminotransferase 1 (PSAT1) confers erlotinib resistance and tumor metastasis in lung adenocarcinoma. Depletion of PSAT1 restored sensitivity to erlotinib and synergistically augmented the tumoricidal effect. Mechanistically, inhibition of PSAT1 activated the ROS-dependent JNK/c-Jun pathway to induce cell apoptosis. In addition, PSAT1 interacted with IQGAP1, subsequently activating STAT3-mediated cell migration independent of its metabolic activity. Clinical analyses showed that PSAT1 expression positively correlated with the progression of human lung adenocarcinoma. Collectively, these findings reveal the multifunctionality of PSAT1 in promoting tumor malignancy through its metabolic and nonmetabolic activities.
    SIGNIFICANCE: Metabolic and nonmetabolic functions of PSAT1 confer EGFR inhibitor resistance and promote metastasis in lung adenocarcinoma, suggesting therapeutic targeting of PSAT1 may attenuate the malignant features of lung cancer.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-4074
  2. Nat Rev Drug Discov. 2022 Oct 06.
      Replication stress is a major cause of genomic instability and a crucial vulnerability of cancer cells. This vulnerability can be therapeutically targeted by inhibiting kinases that coordinate the DNA damage response with cell cycle control, including ATR, CHK1, WEE1 and MYT1 checkpoint kinases. In addition, inhibiting the DNA damage response releases DNA fragments into the cytoplasm, eliciting an innate immune response. Therefore, several ATR, CHK1, WEE1 and MYT1 inhibitors are undergoing clinical evaluation as monotherapies or in combination with chemotherapy, poly[ADP-ribose]polymerase (PARP) inhibitors, or immune checkpoint inhibitors to capitalize on high replication stress, overcome therapeutic resistance and promote effective antitumour immunity. Here, we review current and emerging approaches for targeting replication stress in cancer, from preclinical and biomarker development to clinical trial evaluation.
    DOI:  https://doi.org/10.1038/s41573-022-00558-5
  3. Cell Death Dis. 2022 Oct 03. 13(10): 845
      The short-chain dehydrogenase/reductase (SDR) superfamily has essential roles in lipid metabolism and redox sensing. In recent years, accumulating evidence highlights the emerging association between SDR family enzymes and cancer. Dehydrogenase/reductase member 2(DHRS2) belongs to the NADH/NADPH-dependent SDR family, and extensively participates in the regulation of the proliferation, migration, and chemoresistance of cancer cells. However, the underlying mechanism has not been well defined. In the present study, we have demonstrated that DHRS2 inhibits the growth and metastasis of ovarian cancer (OC) cells in vitro and in vivo. Mechanistically, the combination of transcriptome and metabolome reveals an interruption of choline metabolism by DHRS2. DHRS2 post-transcriptionally downregulates choline kinase α (CHKα) to inhibit AKT signaling activation and reduce phosphorylcholine (PC)/glycerophosphorylcholine (GPC) ratio, impeding choline metabolism reprogramming in OC. These actions mainly account for the tumor-suppressive role of DHRS2 in OC. Overall, our findings establish the mechanistic connection among metabolic enzymes, metabolites, and the malignant phenotype of cancer cells. This could result in further development of novel pharmacological tools against OC by the induction of DHRS2 to disrupt the choline metabolic pathway.
    DOI:  https://doi.org/10.1038/s41419-022-05291-w
  4. NAR Cancer. 2022 Dec;4(4): zcac029
      Chromosome instability (CIN) is an early step in carcinogenesis that promotes tumor cell progression and resistance to therapy. Using plasmids integrated adjacent to telomeres, we have previously demonstrated that the sensitivity of subtelomeric regions to DNA double-strand breaks (DSBs) contributes to telomere loss and CIN in cancer. A high-throughput screen was created to identify compounds that affect telomere loss due to subtelomeric DSBs introduced by I-SceI endonuclease, as detected by cells expressing green fluorescent protein (GFP). A screen of a library of 1832 biologically-active compounds identified a variety of compounds that increase or decrease the number of GFP-positive cells following activation of I-SceI. A curated screen done in triplicate at various concentrations found that inhibition of classical nonhomologous end joining (C-NHEJ) increased DSB-induced telomere loss, demonstrating that C-NHEJ is functional in subtelomeric regions. Compounds that decreased DSB-induced telomere loss included inhibitors of mTOR, p38 and tankyrase, consistent with our earlier hypothesis that the sensitivity of subtelomeric regions to DSBs is a result of inappropriate resection during repair. Although this assay was also designed to identify compounds that selectively target cells experiencing telomere loss and/or chromosome instability, no compounds of this type were identified in the current screen.
    DOI:  https://doi.org/10.1093/narcan/zcac029
  5. Oncogene. 2022 Oct 04.
      Cancer progression is associated with metabolic reprogramming and causes significant intracellular stress; however, the mechanisms that link cellular stress and growth signalling are not fully understood. Here, we identified a mechanism that couples the mitochondrial stress response (MSR) with tumour progression. We demonstrated that the MSR is activated in a significant proportion of human thyroid cancers via the upregulation of heat shock protein D family members and the mitokine, growth differentiation factor 15. Our study also revealed that MSR triggered AKT/S6K signalling by activating mTORC2 via activating transcription factor 4/sestrin 2 activation whilst promoting leucine transporter and nutrient-induced mTORC1 activation. Importantly, we found that an increase in mtDNA played an essential role in MSR-induced mTOR activation and that crosstalk between MYC and MSR potentiated mTOR activation. Together, these findings suggest that the MSR could be a predictive marker for aggressive human thyroid cancer as well as a useful therapeutic target.
    DOI:  https://doi.org/10.1038/s41388-022-02484-7
  6. Mol Cancer. 2022 Oct 06. 21(1): 193
      EGFR-TKI targeted therapy is one of the most effective treatments for lung cancer patients harboring EGFR activating mutations. However, inhibition response is easily attenuated by drug resistance, which is mainly due to bypass activation or downstream activation. Herein, we established osimertinib-resistant cells by stepwise dose-escalation in vitro and an osimertinib-resistant patient-derived xenograft model through persistent treatment in vivo. Phosphorylated proteomics identified that MEK1 and AKT1/2 were abnormally activated in resistant cells compared with parental cells. Likewise, EGFR inhibition by osimertinib induced activation of MEK1 and AKT1/2, which weakened osimertinib sensitivity in NSCLC cells. Consequently, this study aimed to identify a novel inhibitor which could suppress resistant cell growth by dual targeting of MEK1 and AKT1/2. Based on computational screening, we identified that costunolide could interact with MEK1 and AKT1/2. Further exploration using in vitro kinase assays validated that costunolide inhibited the kinase activity of MEK1 and AKT1/2, which restrained downstream ERK-RSK2 and GSK3β signal transduction and significantly induced cell apoptosis. Remarkably, the combination of osimertinib and costunolide showed synergistic or additive inhibitory effects on tumor growth in osimertinib-resistant cell lines and PDX model. Hence, this study highlights a potential therapeutic strategy for osimertinib-resistant patients through targeting of MEK1 and AKT1/2 by costunolide.
    Keywords:  AKT1/2; Combination therapy; Costunolide; MEK1; Osimertinib resistance
    DOI:  https://doi.org/10.1186/s12943-022-01662-1
  7. Cancer Metab. 2022 Oct 03. 10(1): 14
       BACKGROUND: Clear cell renal cell carcinoma (ccRCC), the predominant subtype of kidney cancer, possesses characteristic alterations to multiple metabolic pathways, including the accumulation of cytosolic lipid droplets. However, the pathways that drive lipid droplet accumulation in ccRCC cells and their importance to cancer biology remain poorly understood.
    METHODS: We sought to identify the carbon sources necessary for lipid droplet accumulation using Oil red O staining and isotope-tracing lipidomics. The role of the acyl-CoA synthetase (ACSL) family members, an important group of lipid metabolic enzymes, was investigated using siRNA and drug mediated inhibition. CTB and XTT assays were performed to determine the effect of ACSL3 knockdown and lipid starvation on ccRCC cell viability and shRNA was used to study the effect of ACSL3 in an orthotopic mouse model. The relationship between ferroptosis susceptibility of ccRCC and ACSL3 controlled lipid metabolism was examined using CTB and FACS-based assays. The importance of 5-LOX in ferroptosis susceptibility in ccRCC was shown with XTT survival assays, and the expression level and predictive value of 5-LOX in TCGA ccRCC data was assessed.
    RESULTS: We found that ccRCC cells obtain the necessary substrates for lipid droplet accumulation by metabolizing exogenous serum derived lipids and not through de novo lipogenesis. We show that this metabolism of exogenous fatty acids into lipid droplets requires the enzyme acyl-CoA synthetase 3 (ACSL3) and not other ACSL family proteins. Importantly, genetic or pharmacologic suppression of ACSL3 is cytotoxic to ccRCC cells in vitro and causes a reduction of tumor weight in an orthotopic mouse model. Conversely, ACSL3 inhibition decreases the susceptibility of ccRCC cells to ferroptosis, a non-apoptotic form of cell death involving lipid peroxidation. The sensitivity of ccRCC to ferroptosis is also highly dependent on the composition of exogenous fatty acids and on 5-lipoxygenase (5-LOX), a leukotriene producing enzyme which produces lipid peroxides that have been implicated in other cancers but not in ccRCC.
    CONCLUSIONS: ACSL3 regulates the accumulation of lipid droplets in ccRCC and is essential for tumor growth. In addition, ACSL3 also modulates ferroptosis sensitivity in a manner dependent on the composition of exogenous fatty acids. Both functions of ACSL3 could be exploited for ccRCC therapy.
    Keywords:  5-lipoxygenase (5-LOX); Acyl-CoA synthetase 3 (ACSL3); Clear cell renal cell carcinoma (ccRCC); Ferroptosis; Lipid droplets; Lipid metabolism
    DOI:  https://doi.org/10.1186/s40170-022-00290-z
  8. Signal Transduct Target Ther. 2022 Oct 05. 7(1): 346
      Small-cell lung cancer (SCLC) is the most aggressive and lethal subtype of lung cancer, for which, better understandings of its biology are urgently needed. Single-cell sequencing technologies provide an opportunity to profile individual cells within the tumor microenvironment (TME) and investigate their roles in tumorigenic processes. Here, we performed high-precision single-cell transcriptomic analysis of ~5000 individual cells from primary tumors (PTs) and matched normal adjacent tissues (NATs) from 11 SCLC patients, including one patient with both PT and relapsed tumor (RT). The comparison revealed an immunosuppressive landscape of human SCLC. Malignant cells in SCLC tumors exhibited diverse states mainly related to the cell cycle, immune, and hypoxic properties. Our data also revealed the intratumor heterogeneity (ITH) of key transcription factors (TFs) in SCLC and related gene expression patterns and functions. The non-neuroendocrine (non-NE) tumors were correlated with increased inflammatory gene signatures and immune cell infiltrates in SCLC, which contributed to better responses to immune checkpoint inhibitors. These findings indicate a significant heterogeneity of human SCLC, and intensive crosstalk between cancer cells and the TME at single-cell resolution, and thus, set the stage for a better understanding of the biology of SCLC as well as for developing new therapeutics for SCLC.
    DOI:  https://doi.org/10.1038/s41392-022-01150-4