J Cachexia Sarcopenia Muscle. 2023 Oct 27.
Yuya Takahashi,
Hiroki Fujita,
Yusuke Seino,
Satoko Hattori,
Shihomi Hidaka,
Tsuyoshi Miyakawa,
Atsushi Suzuki,
Hironori Waki,
Daisuke Yabe,
Yutaka Seino,
Yuichiro Yamada.
BACKGROUND: Intramuscular adipose tissue (IMAT) formation derived from muscle fibro-adipogenic progenitors (FAPs) has been recognized as a pathological feature of sarcopenia. This study aimed to explore whether genetic and pharmacological gastric inhibitory polypeptide (GIP) receptor antagonism suppresses IMAT accumulation and ameliorates sarcopenia in mice.METHODS: Whole body composition, grip strength, skeletal muscle weight, tibialis anterior (TA) muscle fibre cross-sectional area (CSA) and TA muscle IMAT area were measured in young and aged male C57BL/6 strain GIP receptor (Gipr)-knockout (Gipr-/- ) and wild-type (Gipr+/+ ) mice. FAPs isolated from lower limb muscles of 12-week-old Gipr+/+ mice were cultured with GIP, and their differentiation into mature adipocytes was examined. Furthermore, TA muscle IMAT area and fibre CSA were measured in untreated Gipr-/- mice and GIP receptor antagonist-treated Gipr+/+ mice after glycerol injection into the TA muscles.
RESULTS: Body composition analysis revealed that 104-week-old Gipr-/- mice had a greater proportion of lean tissue mass (73.7 ± 1.2% vs. 66.5 ± 2.7%, P < 0.05 vs. 104-week-old Gipr+/+ mice) and less adipose tissue mass (13.1 ± 1.3% vs. 19.4 ± 2.6%, P < 0.05 vs. 104-week-old Gipr+/+ mice). Eighty-four-week-old Gipr-/- mice exhibited increases in grip strength (P < 0.05), weights of TA (P < 0.05), soleus (P < 0.01), gastrocnemius (P < 0.05) and quadriceps femoris (P < 0.01) muscles, and average TA muscle fibre CSA (P < 0.05) along with a reduction in TA muscle IMAT area assessed by the number of perilipin-positive cells (P < 0.0001) compared with 84-week-old Gipr+/+ mice. Oil Red O staining analysis revealed 1.6- and 1.7-fold increased adipogenesis in muscle FAPs cultured with 10 and 100 nM of GIP (P < 0.01 and P < 0.001 vs. 0 nM of GIP, respectively). Furthermore, both untreated Gipr-/- mice and GIP receptor antagonist-treated Gipr+/+ mice for 14 days after glycerol injection into the TA muscles at 12 weeks of age showed reduced TA muscle IMAT area (1.39 ± 0.38% and 2.65 ± 0.36% vs. 6.54 ± 1.30%, P < 0.001 and P < 0.01 vs. untreated Gipr+/+ mice, respectively) and increased average TA muscle fibre CSA (P < 0.01 and P < 0.05 vs. untreated Gipr+/+ mice, respectively).
CONCLUSIONS: GIP promotes the differentiation of muscle FAPs into adipocytes and its receptor antagonism suppresses IMAT accumulation and promotes muscle regeneration. Pharmacological GIP receptor antagonism may serve as a novel therapeutic approach for sarcopenia.
Keywords: GIP receptor; aging; fibro-adipogenic progenitors; intramuscular adipose tissue; sarcopenia