J Biol Chem. 2019 Nov 27. pii: jbc.RA119.010032. [Epub ahead of print]
The SIN3 histone-modifying complex regulates the expression of multiple methionine catabolic genes, including SAM synthetase (Sam-S), as well as S-adenosyl-methionine (SAM) levels. To further dissect the relationship between methionine catabolism and epigenetic regulation by SIN3, we sought to identify genes and metabolic pathways controlled by SIN3 and SAM-S in Drosophila melanogaster. Using several approaches, including RNAi-mediated gene silencing, RNA-seq- and quantitative RT-PCR-based transcriptomics, and ultra-high performance LC-MS/MS- and GC/MS- based metabolomics, we found that as a global transcriptional regulator, SIN3 impacted a wide range of genes and pathways. In contrast, SAM-S affected only a narrow range of genes and pathways. The expression and levels of additional genes and metabolites, however, were altered in Sin3A+Sam-S dual knockdown cells. This analysis revealed that SIN3 and SAM-S regulate overlapping pathways, many of which involve one-carbon and central carbon metabolisms. In some cases, the factors acted independently; in some others, redundantly; and for a third set, in opposition. Together, these results obtained from experiments with the chromatin regulator SIN3 and the metabolic enzyme SAM-S, uncover a complex relationship between metabolism and epigenetic regulation.
Keywords: SAM synthetase; SIN3; chromatin; epigenetics; gene regulation; glycolysis; histone modification; metabolism; transcription; tricarboxylic acid cycle (TCA cycle) (Krebs cycle)