bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2020–05–31
forty-six papers selected by
Christian Frezza, , University of Cambridge, MRC Cancer Unit



  1. Nature. 2020 May 27.
      The cellular NADH/NAD+ ratio is fundamental to biochemistry, but the extent to which it reflects versus drives metabolic physiology in vivo is poorly understood. Here we report the in vivo application of Lactobacillus brevis (Lb)NOX1, a bacterial water-forming NADH oxidase, to assess the metabolic consequences of directly lowering the hepatic cytosolic NADH/NAD+ ratio in mice. By combining this genetic tool with metabolomics, we identify circulating α-hydroxybutyrate levels as a robust marker of an elevated hepatic cytosolic NADH/NAD+ ratio, also known as reductive stress. In humans, elevations in circulating α-hydroxybutyrate levels have previously been associated with impaired glucose tolerance2, insulin resistance3 and mitochondrial disease4, and are associated with a common genetic variant in GCKR5, which has previously been associated with many seemingly disparate metabolic traits. Using LbNOX, we demonstrate that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels. Our work identifies an elevated hepatic NADH/NAD+ ratio as a latent metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases. Moreover, it underscores the utility of genetic tools such as LbNOX to empower studies of 'causal metabolism'.
    DOI:  https://doi.org/10.1038/s41586-020-2337-2
  2. Elife. 2020 May 28. pii: e49178. [Epub ahead of print]9
      Mitochondrial dysfunction is associated with activation of the integrated stress response (ISR) but the underlying triggers remain unclear. We systematically combined acute mitochondrial inhibitors with genetic tools for compartment-specific NADH oxidation to trace mechanisms linking different forms of mitochondrial dysfunction to the ISR in proliferating mouse myoblasts and in differentiated myotubes. In myoblasts, we find that impaired NADH oxidation upon electron transport chain (ETC) inhibition depletes asparagine, activating the ISR via the eIF2α kinase GCN2. In myotubes, however, impaired NADH oxidation following ETC inhibition neither depletes asparagine nor activates the ISR, reflecting an altered metabolic state. ATP synthase inhibition in myotubes triggers the ISR via a distinct mechanism related to mitochondrial inner-membrane hyperpolarization. Our work dispels the notion of a universal path linking mitochondrial dysfunction to the ISR, instead revealing multiple paths that depend both on the nature of the mitochondrial defect and on the metabolic state of the cell.
    Keywords:  ATF4; GCN2; genetics; genomics; human; human biology; integrated stress response; medicine; metabolism; mitochondria; mouse; p53
    DOI:  https://doi.org/10.7554/eLife.49178
  3. Trends Cancer. 2020 May 22. pii: S2405-8033(20)30139-4. [Epub ahead of print]
      Cancer cells survive and adapt to many types of stress including hypoxia, nutrient deprivation, metabolic, and oxidative stress. These stresses are sensed by diverse cellular signaling processes, leading to either degradation of mitochondria or alleviation of mitochondrial stress. This review discusses signaling during sensing and mitigation of stress involving mitochondrial communication with the endoplasmic reticulum, and how retrograde signaling upregulates the mitochondrial stress response to maintain mitochondrial integrity. The importance of the mitochondrial unfolded protein response, an emerging pathway that alleviates cellular stress, will be elaborated with respect to cancer. Detailed understanding of cellular pathways will establish mitochondrial stress response as a key mechanism for cancer cell survival leading to cancer progression and resistance, and provide a potential therapeutic target in cancer.
    Keywords:  cancer cell survival; cancer progression; heat shock protein 60; mitochondrial stress response; mitochondrial unfolded protein response; therapeutic resistance
    DOI:  https://doi.org/10.1016/j.trecan.2020.04.009
  4. J Mol Cell Cardiol. 2020 May 23. pii: S0022-2828(20)30196-6. [Epub ahead of print]
      The mitochondrial permeability transition, an established mechanism for heart diseases, is a long-standing mystery of mitochondrial biology and a prime drug target for cardioprotection. Several hypotheses about its molecular nature have been put forward over the years, and the prevailing view is that permeabilization of the inner mitochondrial membrane follows opening of a high-conductance channel, the permeability transition pore, which is also called mitochondrial megachannel or multiconductance channel. The permeability transition strictly requires matrix Ca2+ and is favored by the matrix protein cyclophilin D, which mediates the inhibitory effects of cyclosporin A. Here we provide a review of the field, with specific emphasis on the possible role of the adenine nucleotide translocator and of the F-ATP synthase in channel formation, and on currently available small molecule inhibitors. While the possible mechanisms through which the adenine nucleotide translocator and the F-ATP synthase might form high-conductance channels remain unknown, reconstitution experiments and site-directed mutagenesis combined to electrophysiology have provided important clues. The hypothesis that more than one protein may act as a permeability transition pore provides a reasonable explanation for current controversies in the field, and holds great promise for the solution of the mystery of the permeability transition.
    Keywords:  ATP synthase; Adenine nucleotide translocase; Calcium; Cyclophilin D; Cyclosporin A; Mitochondria; Permeability transition
    DOI:  https://doi.org/10.1016/j.yjmcc.2020.05.014
  5. Oncol Rep. 2020 May 27.
      Glioblastoma is a difficult disease to diagnose. Proteomic techniques are commonly applied in biomedical research, and can be useful for early detection, making an accurate diagnosis and reducing mortality. The relevance of mitochondria in brain development and function is well known; therefore, mitochondria may influence the development of glioblastoma. The T98G (with oxidative metabolism) and U87MG (with glycolytic metabolism) cell lines are considered to be useful glioblastoma models for studying these tumors and the role of mitochondria in key aspects of this disease, such as prognosis, metastasis and apoptosis. In the present study, principal component analysis of protein abundance data identified by liquid chromatography coupled to tandem mass spectrometry (LC‑MS/MS) and matrix‑assisted laser desorption/ionization‑time of flight mass spectrometry (MALDI‑TOF) from 2D gels indicated that representative mitochondrial proteins were associated with glioblastoma. The selected proteins were organized into T98G‑ and U87MG‑specific protein‑protein interaction networks to demonstrate the representativeness of both proteomic techniques. Gene Ontology overrepresentation analysis based on the relevant proteins revealed that mitochondrial processes were associated with metabolic changes, invasion and metastasis in glioblastoma, along with other non‑mitochondrial processes, such as DNA translation, chaperone responses and autophagy. Despite the lower resolution of 2D electrophoresis, principal component analysis yielded information of comparable quality to that of LC‑MS/MS. The present analysis pipeline described a specific and more complete metabolic status for each cell line, defined a clear mitochondrial performance for distinct glioblastoma tumors, and introduced a useful strategy to understand the heterogeneity of glioblastoma.
    DOI:  https://doi.org/10.3892/or.2020.7625
  6. J Mol Cell Cardiol. 2020 May 24. pii: S0022-2828(20)30195-4. [Epub ahead of print]
      The mitochondrial permeability transition pore (mPTP) or mitochondrial megachannel is arguably one of the most mysterious phenomena in biology today. mPTP has been at the center of ongoing extensive scientific research for the last several decades. In this review we will discuss recent advances in the field that enhance our understanding of the molecular composition of mPTP, its regulatory mechanisms and its pathophysiological role. We will describe our recent findings on the role of ATP synthase c-subunit ring as a central player in mitochondrial permeability transition and as an important metabolic regulator during development and in degenerative diseases.
    Keywords:  ATP synthase; Apoptosis; Mitochondria; Mitochondrial permeability transition pore
    DOI:  https://doi.org/10.1016/j.yjmcc.2020.05.013
  7. Autophagy. 2020 May 27. 1-2
      Major histocompatibility complex class I (MHC-I) is a key molecule in anti-tumor adaptive immunity. MHC-I is essential for endogenous antigen presentation by cancer cells and subsequent recognition and clearance by CD8+ T cells. Defects in MHC-I expression occur frequently in several cancers, leading to impaired antigen presentation, immune evasion and/or resistance to immune checkpoint blockade (ICB) therapy. Pancreatic ductal adenocarcinoma (PDAC), a deadly malignancy with dismal patient prognosis, is resistant to ICB and shows frequent downregulation of MHC-I independent of genetic mutations abrogating MHC-I expression. Previously, we showed that PDAC cells exhibit elevated levels of autophagy and lysosomal biogenesis, which together support the survival and growth of PDAC tumors via both cell-autonomous and non-cell-autonomous mechanisms. In our recent study, we have identified NBR1-mediated selective macroautophagy/autophagy of MHC-I as a novel mechanism that facilitates immune evasion by PDAC cells. Importantly, autophagy or lysosome inhibition restores MHC-I expression, leading to enhanced anti-tumor T cell immunity and improved response to ICB in transplanted tumor models in syngeneic host mice. Our results highlight a previously unknown function of autophagy and the lysosome in regulation of immunogenicity in PDAC, and provide a novel therapeutic strategy for targeting this deadly disease.
    Keywords:  MHC-I; Pancreatic cancer; anti-tumor immunity; autophagy; immune checkpoint blockade; lysosome
    DOI:  https://doi.org/10.1080/15548627.2020.1769973
  8. Int J Mol Sci. 2020 May 26. pii: E3759. [Epub ahead of print]21(11):
      Genetic up-regulation of mitochondrial 2-oxoglutarate dehydrogenase is known to increase reactive oxygen species, being detrimental for cancer cells. Thiamine diphosphate (ThDP, cocarboxylase) is an essential activator of the enzyme and inhibits p53-DNA binding in cancer cells. We hypothesize that the pleiotropic regulator ThDP may be of importance for anticancer therapies. The hypothesis is tested in the present work on lung adenocarcinoma cells A549 possessing the p53-p21 pathway as fully functional or perturbed by p21 knockdown. Molecular mechanisms of ThDP action on cellular viability and their interplay with the cisplatin and p53-p21 pathways are characterized. Despite the well-known antioxidant properties of thiamine, A549 cells exhibit decreases in their reducing power and glutathione level after incubation with 5 mM ThDP, not observed in non-cancer epithelial cells Vero. Moreover, thiamine deficiency elevates glutathione in A549 cells. Viability of the thiamine deficient A549 cells is increased at a low (0.05 mM) ThDP. However, the increase is attenuated by 5 mM ThDP, p21 knockdown, specific inhibitor of the 2-oxoglutarate dehydrogenase complex (OGDHC), or cisplatin. Cellular levels of the catalytically competent ThDP·OGDHC holoenzyme are dysregulated by p21 knockdown and correlate negatively with the A549 viability. The inverse relationship between cellular glutathione and holo-OGDHC is corroborated by their comparison in the A549 and Vero cells. The similarity, non-additivity, and p21 dependence of the dual actions of ThDP and cisplatin on A549 cells manifest a common OGDHC-mediated mechanism of the viability decrease. High ThDP saturation of OGDHC compromises the redox state of A549 cells under the control of p53-p21 axes.
    Keywords:  2-oxoglutarate dehydrogenase; anticancer effect of cocarboxylase; cisplatin; glutathione; p21; p53; thiamine
    DOI:  https://doi.org/10.3390/ijms21113759
  9. J Mol Cell Cardiol. 2020 May 23. pii: S0022-2828(20)30194-2. [Epub ahead of print]
      The adenosine nucleotide translocase (ANT) family of proteins are inner mitochondrial membrane proteins involved in energy homeostasis and cell death. The primary function of ANT proteins is to exchange cytosolic ADP with matrix ATP, facilitating the export of newly synthesized ATP to the cell while providing new ADP substrate to the mitochondria. As such, the ANT proteins are central to maintaining energy homeostasis in all eukaryotic cells. Evidence also suggests that the ANTs constitute a pore-forming component of the mitochondrial permeability transition pore (MPTP), a structure that forms in the inner mitochondrial membrane that is thought to underlie regulated necrotic cell death. Additionally, emerging studies suggest that ANT proteins are also critical for mitochondrial uncoupling and for promoting mitophagy. Thus, the ANTs are multifunctional proteins that are poised to participate in several aspects of mitochondrial biology and the greater regulation of cell death, which will be discussed here.
    Keywords:  ANT; ATP; Heart; Mitochondria; Necrotic cell death
    DOI:  https://doi.org/10.1016/j.yjmcc.2020.05.012
  10. Mitochondrion. 2020 May 26. pii: S1567-7249(20)30038-6. [Epub ahead of print]
      Mitochondria is a dynamic organelle of the cell that can regulate and maintain cellular ATP level, ROS production, calcium signaling and immune response. In order to retain their shape and distribution, mitochondria go through coordinated cycles of fission and fusion. Further, dysfunctional mitochondria are selectively eliminated from the cell via mitophagy to synchronize mitochondrial quality control and cellular homeostasis. In addition, mitochondria when in close proximity with the endoplasmic reticulum can alter the signaling pathways and some recent findings also reveal a direct correlation between the mitochondrial localization in the cell to the immune response elicited against the invading pathogen. These modulations in the mitochondrial network are collectively termed as 'mitochondrial dynamics'. Diverse bacteria, virus and parasitic pathogens upon infecting a cell can alter the host mitochondrial dynamics in favor of their multiplication and this in turn can be a major determinant of the disease outcome. Pharmacological perturbations in these pathways thus could lead to generation of additional therapeutic opportunities. This review will focus on the pathogenic modulation of the host mitochondrial dynamics, specifically during the bacterial infections and describes how dysregulated mitochondrial dynamics facilitates the pathogen's ability to establish efficient infection.
    DOI:  https://doi.org/10.1016/j.mito.2020.05.005
  11. FASEB J. 2020 May 28.
      Mutations in the human cystathionine beta synthase (CBS) gene are known to cause endothelial dysfunction responsible for cardiovascular and neurovascular diseases. CBS is the predominant hydrogen sulfide (H2 S)-producing enzyme in endothelial cells (ECs). Recently, H2 S was shown to attenuate ROS and improve mitochondrial function. Mitochondria are metabolic organelles that actively transform their ultrastructure to mediate their function. Therefore, we questioned whether perturbation of CBS/H2 S activity could drive mitochondrial dysfunction via mitochondrial dynamics in ECs. Here we demonstrate that silencing CBS induces mitochondria fragmentation, attenuates efficient oxidative phosphorylation, and decreases EC function. Mechanistically, CBS silencing significantly elevates ROS production, thereby leading to reduced mitofusin 2 (MFN2) expression, decouple endoplasmic reticulum-mitochondria contacts, increased mitochondria fission, enhanced receptor-mediated mitophagy, and increased EC death. These defects were significantly rescued by the treatment of H2 S donors. Taken together our data highlights a novel signaling axis that mechanistically links CBS with mitochondrial function and ER-mitochondrial tethering and could be considered as a new therapeutic approach for the intervention of EC dysfunction-related pathologies.
    Keywords:  endothelial cells; mitochondrial dynamics; mitochondrial fission; mitochondrial fusion; mitophagy
    DOI:  https://doi.org/10.1096/fj.202000173R
  12. EMBO Rep. 2020 May 24. e50094
      Multicellular organisms are complex biological systems, composed of specialized tissues that require coordination of the metabolic and fitness state of each component. In the cells composing the tissues, one central organelle is the mitochondrion, a compartment essential for many energetic and fundamental biological processes. Beyond serving these functions, mitochondria have emerged as signaling hubs in biological systems, capable of inducing changes to the cell they are in, to cells in distal tissues through secreted factors, and to overall animal physiology. Here, we describe our current understanding of these communication mechanisms in the context of mitochondrial stress. We focus on cellular mechanisms that deal with perturbations to the mitochondrial proteome and outline recent advances in understanding how local perturbations can affect distal tissues and animal physiology in model organisms. Finally, we discuss recent findings of these responses associated with metabolic and age-associated diseases in mammalian systems, and how they may be employed as diagnostic and therapeutic tools.
    Keywords:  aging; mitochondria; stress
    DOI:  https://doi.org/10.15252/embr.202050094
  13. Sci Rep. 2020 May 26. 10(1): 8677
      Wild type mitochondrial isocitrate dehydrogenase (IDH2) was previously reported to produce oncometabolite 2-hydroxyglutarate (2HG). Besides, mitochondrial deacetylase SIRT3 has been shown to regulate the oxidative function of IDH2. However, regulation of 2HG formation by SIRT3-mediated deacetylation was not investigated yet. We aimed to study mitochondrial IDH2 function in response to acetylation and deacetylation, and focus specifically on 2HG production by IDH2. We used acetylation surrogate mutant of IDH2 K413Q and assayed enzyme kinetics of oxidative decarboxylation of isocitrate, 2HG production by the enzyme, and 2HG production in cells. The purified IDH2 K413Q exhibited lower oxidative reaction rates than IDH2 WT. 2HG production by IDH2 K413Q was largely diminished at the enzymatic and cellular level, and knockdown of SIRT3 also inhibited 2HG production by IDH2. Contrary, the expression of putative mitochondrial acetylase GCN5L likely does not target IDH2. Using mass spectroscopy, we further identified lysine residues within IDH2, which are the substrates of SIRT3. In summary, we demonstrate that 2HG levels arise from non-mutant IDH2 reductive function and decrease with increasing acetylation level. The newly identified lysine residues might apply in regulation of IDH2 function in response to metabolic perturbations occurring in cancer cells, such as glucose-free conditions.
    DOI:  https://doi.org/10.1038/s41598-020-65351-z
  14. Nat Metab. 2020 Mar;2(3): 270-277
      Critical to the bacterial stringent response is the rapid relocation of resources from proliferation toward stress survival through the respective accumulation and degradation of (p)ppGpp by RelA and SpoT homologues. While mammalian genomes encode MESH1, a homologue of the bacterial (p)ppGpp hydrolase SpoT, neither (p)ppGpp nor its synthetase has been identified in mammalian cells. Here, we show that human MESH1 is an efficient cytosolic NADPH phosphatase that facilitates ferroptosis. Visualization of the MESH1-NADPH crystal structure revealed a bona fide affinity for the NADPH substrate. Ferroptosis-inducing erastin or cystine deprivation elevates MESH1, whose overexpression depletes NADPH and sensitizes cells to ferroptosis, whereas MESH1 depletion promotes ferroptosis survival by sustaining the levels of NADPH and GSH and by reducing lipid peroxidation. The ferroptotic protection by MESH1 depletion is ablated by suppression of the cytosolic NAD(H) kinase, NADK, but not its mitochondrial counterpart NADK2. Collectively, these data shed light on the importance of cytosolic NADPH levels and their regulation under ferroptosis-inducing conditions in mammalian cells.
    DOI:  https://doi.org/10.1038/s42255-020-0181-1
  15. Int J Mol Sci. 2020 May 25. pii: E3731. [Epub ahead of print]21(10):
      The main role of mitochondria, as pivotal organelles for cellular metabolism, is the production of energy (ATP) through an oxidative phosphorylation system. During this process, the electron transport chain creates a proton gradient that drives the synthesis of ATP. One of the main features of tumoral cells is their altered metabolism, providing alternative routes to enhance proliferation and survival. Hence, it is of utmost importance to understand the relationship between mitochondrial pH, tumoral metabolism, and cancer. In this manuscript, we develop a highly specific nanosensor to accurately measure the intramitochondrial pH using fluorescence lifetime imaging microscopy (FLIM). Importantly, we have applied this nanosensor to establish differences that may be hallmarks of different metabolic pathways in breast cancer cell models, leading to the characterization of different metabophenotypes.
    Keywords:  FLIM microscopy; cancer metabolism; intracellular sensors; nanosensing; tumoral metabolism
    DOI:  https://doi.org/10.3390/ijms21103731
  16. Commun Biol. 2020 May 29. 3(1): 271
      Metabolic flux technology with the Seahorse bioanalyzer has emerged as a standard technique in cellular metabolism studies, allowing for simultaneous kinetic measurements of respiration and glycolysis. Methods to extend the utility and versatility of the metabolic flux assay would undoubtedly have immediate and wide-reaching impacts. Herein, we describe a platform that couples the metabolic flux assay with high-content fluorescence imaging to simultaneously provide means for normalization of respiration data with cell number; analyze cell cycle distribution; and quantify mitochondrial content, fragmentation state, membrane potential, and mitochondrial reactive oxygen species. Integration of fluorescent dyes directly into the metabolic flux assay generates a more complete data set of mitochondrial features in a single assay. Moreover, application of this integrated strategy revealed insights into mitochondrial function following PGC1a and PRC1 inhibition in pancreatic cancer and demonstrated how the Rho-GTPases impact mitochondrial dynamics in breast cancer.
    DOI:  https://doi.org/10.1038/s42003-020-0988-z
  17. Nat Cell Biol. 2020 May 25.
      It is well accepted that cancers co-opt the microenvironment for their growth. However, the molecular mechanisms that underlie cancer-microenvironment interactions are still poorly defined. Here, we show that Rho-associated kinase (ROCK) in the mammary tumour epithelium selectively actuates protein-kinase-R-like endoplasmic reticulum kinase (PERK), causing the recruitment and persistent education of tumour-promoting cancer-associated fibroblasts (CAFs), which are part of the cancer microenvironment. An analysis of tumours from patients and mice reveals that cysteine-rich with EGF-like domains 2 (CRELD2) is the paracrine factor that underlies PERK-mediated CAF education downstream of ROCK. We find that CRELD2 is regulated by PERK-regulated ATF4, and depleting CRELD2 suppressed tumour progression, demonstrating that the paracrine ROCK-PERK-ATF4-CRELD2 axis promotes the progression of breast cancer, with implications for cancer therapy.
    DOI:  https://doi.org/10.1038/s41556-020-0523-y
  18. Hepatology. 2020 May 27.
       BACKGROUND & AIMS: Hepatocytes undergo profound metabolic rewiring when primed to proliferate during compensatory regeneration and in hepatocellular carcinoma (HCC). However, the metabolic control of these processes is not fully understood. In order to capture the metabolic signature of proliferating hepatocytes, we applied state-of-the-art systems biology approaches to models of liver regeneration, pharmacologically- and genetically-activated cell proliferation, and HCC.
    APPROACH & RESULTS: Integrating metabolomics, lipidomics and transcriptomics, we link changes in the lipidome of proliferating hepatocytes to altered metabolic pathways including lipogenesis, fatty acid desaturation, and generation of phosphatidylcholine (PC). We confirm this altered lipid signature in human HCC and show a positive correlation of monounsaturated-PC with hallmarks of cell proliferation and hepatic carcinogenesis.
    CONCLUSION: Overall, we demonstrate that specific lipid metabolic pathways are coherently altered when hepatocytes switch to proliferation. These represent a source of targets for the development of new therapeutic strategies and prognostic biomarkers of HCC.
    Keywords:  HCC; cancer metabolism; liver regeneration; mass spectrometry imaging; phosphatidylcholine
    DOI:  https://doi.org/10.1002/hep.31391
  19. Front Oncol. 2020 ;10 723
      Cancer cells are characterized as highly proliferative at the expense of enhancement of metabolic rate. Consequently, cancer cells rely on antioxidant defenses to overcome the associated increased production of reactive oxygen species (ROS). The reliance of tumor metabolism on amino acids, especially amino acid transport systems, has been extensively studied over the past decade. Although cysteine is the least abundant amino acid in the cell, evidences described it as one of the most important amino acid for cell survival and growth. Regarding its multi-functionality as a nutrient, protein folding, and major component for redox balance due to its involvement in glutathione synthesis, disruption of cysteine homeostasis appears to be promising strategy for induction of cancer cell death. Ten years ago, ferroptosis, a new form of non-apoptotic cell death, has been described as a result of cysteine insufficiency leading to a collapse of intracellular glutathione level. In the present review, we summarized the metabolic networks involving the amino acid cysteine in cancer and ferroptosis and we focused on describing the recently discovered glutathione-independent pathway, a potential player in cancer ferroptosis resistance. Then, we discuss the implication of cysteine as key player in ferroptosis as a precursor for glutathione first, but also as metabolic precursor in glutathione-independent ferroptosis axis.
    Keywords:  cysteine; ferroptosis; glutathione; lipid peroxides; tumor-resistance; xCT transporter
    DOI:  https://doi.org/10.3389/fonc.2020.00723
  20. Cancers (Basel). 2020 May 27. pii: E1371. [Epub ahead of print]12(6):
      Osteosarcoma (OS) is a primary malignant bone tumor and OS metastases are mostly found in the lung. The limited understanding of the biology of metastatic processes in OS limits the ability for effective treatment. Alterations to the metabolome and its transformation during metastasis aids the understanding of the mechanism and provides information on treatment and prognosis. The current study intended to identify metabolic alterations during OS progression by using a targeted gas chromatography mass spectrometry approach. Using a female OS cell line model, malignant and metastatic cells increased their energy metabolism compared to benign OS cells. The metastatic cell line showed a faster metabolic flux compared to the malignant cell line, leading to reduced metabolite pools. However, inhibiting both glycolysis and glutaminolysis resulted in a reduced proliferation. In contrast, malignant but non-metastatic OS cells showed a resistance to glycolytic inhibition but a strong dependency on glutamine as an energy source. Our in vivo metabolic approach hinted at a potential sex-dependent metabolic alteration in OS patients with lung metastases (LM), although this will require validation with larger sample sizes. In line with the in vitro results, we found that female LM patients showed a decreased central carbon metabolism compared to metastases from male patients.
    Keywords:  GC-MS; flux analysis; glucose; glutamine, sex and gender; osteosarcoma
    DOI:  https://doi.org/10.3390/cancers12061371
  21. FEBS J. 2020 May 27.
      Developing new technologies to study metabolism is increasingly important as metabolic disease prevalence increases. Mitochondria control cellular metabolism and dynamic changes in mitochondrial function are associated with metabolic abnormalities in cardiovascular disease, cancer, and obesity. However, a lack of precise and reversible methods to control mitochondrial function has prevented moving from association to causation. Recent advances in optogenetics have addressed this challenge, and mitochondrial function can now be precisely controlled in vivo using light. A class of genetically-encoded, light-activated membrane channels and pumps has addressed mechanistic questions that promise to provide new insights into how cellular metabolism downstream of mitochondrial function contributes to disease. Here, we highlight emerging reagents - mitochondria-targeted light-activated cation channels or proton pumps - to decrease or increase mitochondrial activity upon light exposure, a technique we refer to as mitochondrial light switches, or mtSWITCH . The mtSWITCH technique is broadly applicable, as energy availability and metabolic signaling are conserved aspects of cellular function and health. Here, we outline the use of these tools in diverse cellular models of disease. We review the molecular details of each optogenetic tool, summarize the results obtained with each, and outline best practices for using optogenetic approaches to control mitochondrial function and downstream metabolism.
    Keywords:  AMPK; Parkinson’s; apoptosis; bioenergetics; calcium signaling; diabetes; hypoxia; mitophagy
    DOI:  https://doi.org/10.1111/febs.15424
  22. Biochem Biophys Res Commun. 2020 May 20. pii: S0006-291X(20)30893-7. [Epub ahead of print]
      Signal transducer and activator of transcription (STAT) proteins are latent cytoplasmic transcription factors essential for cytokine signaling. Our previous study showed that interleukin-3 (IL-3) induced STAT5 translocation to mitochondria and binding to mitochondrial DNA (mtDNA) in vitro. In this report, we further demonstrated in vivo binding of endogenous STAT5a to mtDNA transcriptional control region and reduced gene expression from all three mtDNA promoters after IL-3 stimulation. To specifically define the function of mitochondrial STAT5a, we generated mitochondrial-targeting wild-type and mutant STAT5a proteins. Compared with non-targeting STAT5a, mitochondrial-targeting wild-type STAT5a significantly reduced mitochondrial gene expression in transfected HEK293 cells. The level of attenuation was amplified in cells expressing constitutively active STAT5a, but abrogated in cells expressing DNA-binding-defective STAT5a. STAT5a-mediated repression of mtDNA expression also positively correlated with STAT5a binding to the E2 subunit of pyruvate dehydrogenase complex (PDC-E2), both a gate-keeping metabolic enzyme and a component of mtDNA nucleoid in mitochondrial matrix. Metabolic shift away from mitochondrial respiration is known in many cytokine-stimulated cells and cancer cells. STAT5a-mediated repression of mitochondrial gene expression and its interaction with PDC-E2 may provide important insights into its underlying mechanisms.
    Keywords:  Electron transport chain; Interleukin-3; Metabolism; Mitochondria; STAT5
    DOI:  https://doi.org/10.1016/j.bbrc.2020.04.152
  23. Nature. 2020 May 27.
      Cancers develop as a result of driver mutations1,2 that lead to clonal outgrowth and the evolution of disease3,4. The discovery and functional characterization of individual driver mutations are central aims of cancer research, and have elucidated myriad phenotypes5 and therapeutic vulnerabilities6. However, the serial genetic evolution of mutant cancer genes7,8 and the allelic context in which they arise is poorly understood in both common and rare cancer genes and tumour types. Here we find that nearly one in four human tumours contains a composite mutation of a cancer-associated gene, defined as two or more nonsynonymous somatic mutations in the same gene and tumour. Composite mutations are enriched in specific genes, have an elevated rate of use of less-common hotspot mutations acquired in a chronology driven in part by oncogenic fitness, and arise in an allelic configuration that reflects context-specific selective pressures. cis-acting composite mutations are hypermorphic in some genes in which dosage effects predominate (such as TERT), whereas they lead to selection of function in other genes (such as TP53). Collectively, composite mutations are driver alterations that arise from context- and allele-specific selective pressures that are dependent in part on gene and mutation function, and which lead to complex-often neomorphic-functions of biological and therapeutic importance.
    DOI:  https://doi.org/10.1038/s41586-020-2315-8
  24. Trends Cancer. 2020 Jun;pii: S2405-8033(20)30078-9. [Epub ahead of print]6(6): 448-450
      Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer subtype, characterized by a lipid storage phenotype. We found that carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of mitochondrial fatty acid (FA) transport, is repressed by hypoxia-inducible factors (HIFs), reducing FA oxidation (FAO). Altering lipid metabolism may be a new therapeutic avenue in ccRCC.
    Keywords:  CPT1A; HIF; ccRCC; clear cell renal cell carcinoma; hypoxia; lipid metabolism
    DOI:  https://doi.org/10.1016/j.trecan.2020.02.017
  25. Nat Cell Biol. 2020 May 25.
      Tissue stem cells are the cell of origin for many malignancies. Metabolites regulate the balance between self-renewal and differentiation, but whether endogenous metabolic pathways or nutrient availability predispose stem cells towards transformation remains unknown. Here, we address this question in epidermal stem cells (EpdSCs), which are a cell of origin for squamous cell carcinoma. We find that oncogenic EpdSCs are serine auxotrophs whose growth and self-renewal require abundant exogenous serine. When extracellular serine is limited, EpdSCs activate de novo serine synthesis, which in turn stimulates α-ketoglutarate-dependent dioxygenases that remove the repressive histone modification H3K27me3 and activate differentiation programmes. Accordingly, serine starvation or enforced α-ketoglutarate production antagonizes squamous cell carcinoma growth. Conversely, blocking serine synthesis or repressing α-ketoglutarate-driven demethylation facilitates malignant progression. Together, these findings reveal that extracellular serine is a critical determinant of EpdSC fate and provide insight into how nutrient availability is integrated with stem cell fate decisions during tumour initiation.
    DOI:  https://doi.org/10.1038/s41556-020-0525-9
  26. J Physiol. 2020 May 25.
       KEY POINTS: Dietary nitrate is a prominent therapeutic strategy to mitigate some metabolic deleterious effects related to obesity. Mitochondrial dysfunction is causally linked to adipose tissue inflammation and insulin resistance. Whole-body glucose tolerance is prevented by nitrate independent of body weight and energy expenditure. Dietary nitrate reduces epididymal adipose tissue inflammation and mitochondrial reactive oxygen species emission while preserving insulin signalling. Metabolic beneficial effects of nitrate consumption are associated with improvements in mitochondrial redox balance in hypertrophic adipose tissue.
    ABSTRACT: Evidence has accumulated to indicate that dietary nitrate alters energy expenditure and the metabolic derangements associated with a high-fat diet, however, the mechanism(s) of action remain incompletely elucidated. Therefore, we aimed to determine if dietary nitrate (4 mm sodium nitrate via drinking water) could prevent high-fat diet (HFD) mediated glucose intolerance in association with improved mitochondrial bioenergetics within both white (WAT) and brown (BAT) adipose tissue. HFD-feeding caused glucose intolerance (P < 0.05) and increased body weight. As a result of higher body weight, energy expenditure increased proportionally. HFD-fed mice displayed greater mitochondrial uncoupling and a 2-fold increase in UCP-1 content within BAT. Within epididymal adipose tissue (eWAT), HFD increased cell size (i.e. hypertrophy), mitochondrial H2 O2 emission, oxidative stress, JNK phosphorylation, leucocyte infiltration, and induced insulin resistance. Remarkably, dietary nitrate consumption attenuated and/or mitigated all these responses, including rendering mitochondria more coupled within BAT, and normalizing mitochondrial H2 O2 emission and insulin-mediated Akt-Thr308 phosphorylation within eWAT. Intriguingly, the positive effects of dietary nitrate appear to be independent of eWAT mitochondrial respiratory capacity and content. Altogether, these data suggest that dietary nitrate attenuates the development of HFD-induced insulin resistance in association with attenuating WAT inflammation and redox balance, independent of changes within either WAT or BAT mitochondrial respiratory capacity/content. This article is protected by copyright. All rights reserved.
    Keywords:  insulin resistance; mitochondrial function; nitrate; nutrition; obesity
    DOI:  https://doi.org/10.1113/JP279455
  27. Semin Cell Dev Biol. 2020 May 20. pii: S1084-9521(18)30311-2. [Epub ahead of print]
      Proper regulation of cellular lipid storage and oxidation is indispensable for the maintenance of cellular energy homeostasis and health. Mitochondrial function has been shown to be a main determinant of functional lipid storage and oxidation, which is of particular interest for the adipose tissue, as it is the main site of triacylglyceride storage in lipid droplets (LDs). Recent studies have identified a subpopulation of mitochondria attached to LDs, peridroplet mitochondria (PDM) that can be separated from cytoplasmic mitochondria (CM) by centrifugation. PDM have distinct bioenergetics, proteome, cristae organization and dynamics that support LD build-up, however their role in adipose tissue biology remains largely unexplored. Therefore, understanding the molecular basis of LD homeostasis and their relationship to mitochondrial function and attachment in adipocytes is of major importance.
    Keywords:  Adipose tissue; Lipid droplets; Lipotoxicity; Miochondria; Triacylglycerides
    DOI:  https://doi.org/10.1016/j.semcdb.2020.04.013
  28. Cell. 2020 May 20. pii: S0092-8674(20)30553-5. [Epub ahead of print]
      Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.
    Keywords:  cancer metabolism; ependymoma; epigenetics; hindbrain development; microenvironment; paediatric cancer
    DOI:  https://doi.org/10.1016/j.cell.2020.04.047
  29. Cell Biol Toxicol. 2020 May 29.
      Uncoupling protein 1 (UCP1) has been implicated in ameliorating metabolic related disorders, of which most symptoms are risk factors for breast cancer. Here, we found that UCP1 was obviously downregulated in basal-like breast cancer (BLBC) and was positively correlated with improved survival. However, the underlying regulatory mechanisms remain largely unknown. Our studies showed that UCP1 inhibited tumor progression via suppressing aldehyde dehydrogenase (ALDH)-positive breast cancer stem cell (BCSC) population in BLBC. Furthermore, we found that UCP1 induced the upregulation of fructose bisphosphatase 1 (FBP1) which was previously blocked by Snail overexpression, and UCP1 decreased ALDH-positive BCSCs via FBP1-dependent metabolic rewiring, which could be reversed by Snail overexpression. In addition, breast cancer cells co-cultured with UCP1-deficient adipocytes had increased proportion of ALDH-positive BCSCs, indicating a potential protection role of UCP1 in tumor microenvironment. These results suggested that UCP1 suppressed BCSCs through inhibiting Snail-mediated repression of FBP1, and that upregulation of UCP1 might be a previously undescribed therapeutic strategy for combating breast cancer. Graphical abstract.
    Keywords:  BCSC; Breast cancer; FBP1; UCP1
    DOI:  https://doi.org/10.1007/s10565-020-09533-5
  30. Mech Ageing Dev. 2020 May 23. pii: S0047-6374(20)30062-2. [Epub ahead of print] 111266
      Mitochondria is a key cellular organelle, which is tightly supervised by multiple oversight cellular mechanisms regulating mitochondrial biogenesis and mitochondria maintenance and/or elimination. Selective autophagy of mitochondria, id est mitophagy, is one of the cellular mechanisms controlling mitochondria homeostasis. The nematode Caenorhabditis elegans has recently emerged as a powerful model organism to study the roles and functions of mitophagy. We present here the current knowledge on cellular and molecular mechanisms underlying the selective elimination of mitochondria by autophagy in C. elegans in the context of developmental processes, aging and adaptive responses to various stresses.
    Keywords:  Caenorhabditis elegans; aging; heteroplasmy; mitochondria; mitochondria homeostasis; mitophagy; paternal mitochondria elimination; stress
    DOI:  https://doi.org/10.1016/j.mad.2020.111266
  31. Nat Commun. 2020 May 29. 11(1): 2682
      Pancreatic cancer stem cells (PaCSCs) drive pancreatic cancer tumorigenesis, chemoresistance and metastasis. While eliminating this subpopulation of cells would theoretically result in tumor eradication, PaCSCs are extremely plastic and can successfully adapt to targeted therapies. In this study, we demonstrate that PaCSCs increase expression of interferon-stimulated gene 15 (ISG15) and protein ISGylation, which are essential for maintaining their metabolic plasticity. CRISPR-mediated ISG15 genomic editing reduces overall ISGylation, impairing PaCSCs self-renewal and their in vivo tumorigenic capacity. At the molecular level, ISG15 loss results in decreased mitochondrial ISGylation concomitant with increased accumulation of dysfunctional mitochondria, reduced oxidative phosphorylation (OXPHOS) and impaired mitophagy. Importantly, disruption in mitochondrial metabolism affects PaCSC metabolic plasticity, making them susceptible to prolonged inhibition with metformin in vivo. Thus, ISGylation is critical for optimal and efficient OXPHOS by ensuring the recycling of dysfunctional mitochondria, and when absent, a dysregulation in mitophagy occurs that negatively impacts PaCSC stemness.
    DOI:  https://doi.org/10.1038/s41467-020-16395-2
  32. Blood. 2020 May 26. pii: blood.2019001808. [Epub ahead of print]
      Metabolic alterations in cancer represent convergent effects of oncogenic mutations. We hypothesized that a metabolism-restricted genetic screen, comparing normal primary mouse hematopoietic cells and their malignant counterparts in an ex vivo system mimicking the bone marrow microenvironment, would define distinctive vulnerabilities in acute myeloid leukemia (AML). Leukemic cells, but not their normal myeloid counterparts, depended on the aldehyde dehydrogenase 3a2 (Aldh3a2) enzyme that oxidizes long-chain aliphatic aldehydes to prevent cellular oxidative damage. Aldehydes are by-products of increased oxidative phosphorylation and nucleotide synthesis in cancer and generated from lipid peroxides underlying the non-caspase dependent form of cell death, ferroptosis. Leukemic cell dependence on Aldh3a2 was seen across multiple mouse and human myeloid leukemias. Aldh3a2 inhibition was synthetically lethal with glutathione peroxidase-4 (GPX4) inhibition, a known trigger of ferroptosis that by itself minimally affects AML cells. Inhibiting Aldh3a2 provides a therapeutic opportunity and a unique synthetic lethality to exploit the distinctive metabolic state of malignant cells.
    DOI:  https://doi.org/10.1182/blood.2019001808
  33. Dev Cell. 2020 May 22. pii: S1534-5807(20)30357-9. [Epub ahead of print]
      Correct functioning of chondrocytes is crucial for long bone growth and fracture repair. These cells are highly anabolic but survive and function in an avascular environment, implying specific metabolic requirements that are, however, poorly characterized. Here, we show that chondrocyte identity and function are closely linked with glutamine metabolism in a feedforward process. The master chondrogenic transcription factor SOX9 stimulates glutamine metabolism by increasing glutamine consumption and levels of glutaminase 1 (GLS1), a rate-controlling enzyme in this pathway. Consecutively, GLS1 action is critical for chondrocyte properties and function via a tripartite mechanism. First, glutamine controls chondrogenic gene expression epigenetically through glutamate dehydrogenase-dependent acetyl-CoA synthesis, necessary for histone acetylation. Second, transaminase-mediated aspartate synthesis supports chondrocyte proliferation and matrix synthesis. Third, glutamine-derived glutathione synthesis avoids harmful reactive oxygen species accumulation and allows chondrocyte survival in the avascular growth plate. Collectively, our study identifies glutamine as a metabolic regulator of cartilage fitness during bone development.
    Keywords:  GLS1; GLUD1; GOT2; biosynthesis; chondrocyte; endochondral ossification; glutamine metabolism; histone acetylation; redox homeostasis; survival
    DOI:  https://doi.org/10.1016/j.devcel.2020.05.001
  34. BMC Cancer. 2020 May 25. 20(1): 470
       BACKGROUND: Glutamine serves as an important nutrient with many cancer types displaying glutamine dependence. Following cellular uptake glutamine is converted to glutamate in a reaction catalysed by mitochondrial glutaminase. This glutamate has many uses, including acting as an anaplerotic substrate (via alpha-ketoglutarate) to replenish TCA cycle intermediates. CB-839 is a potent, selective, orally bioavailable inhibitor of glutaminase that has activity in Triple receptor-Negative Breast Cancer (TNBC) cell lines and evidence of efficacy in advanced TNBC patients.
    METHODS: A panel of eleven breast cancer cell lines was used to investigate the anti-proliferative effects of the glutaminase inhibitors CB-839 and BPTES in different types of culture medium, with or without additional pyruvate supplementation. The abundance of the TCA cycle intermediate fumarate was quantified as a measure if TCA cycle anaplerosis. Pyruvate secretion by TNBC cultures was then assessed with or without AZD3965, a monocarboxylate transporter 1 (MCT1) inhibitor. Finally, two dimensional (2D) monolayer and three dimensional (3D) spheroid assays were used to compare the effect of microenvironmental growth conditions on CB-839 activity.
    RESULTS: The anti-proliferative activity of CB-839 in a panel of breast cancer cell lines was similar to published reports, but with a major caveat; growth inhibition by CB-839 was strongly attenuated in culture medium containing pyruvate. This pyruvate-dependent attenuation was also observed with a related glutaminase inhibitor, BPTES. Studies demonstrated that exogenous pyruvate acted as an anaplerotic substrate preventing the decrease of fumarate in CB-839-treated conditions. Furthermore, endogenously produced pyruvate secreted by TNBC cell lines was able to act in a paracrine manner to significantly decrease the sensitivity of recipient cells to glutaminase inhibition. Suppression of pyruvate secretion using the MCT1 inhibitor AZD3965, antagonised this paracrine effect and increased CB-839 activity. Finally, CB-839 activity was significantly compromised in 3D compared with 2D TNBC culture models, suggesting that 3D microenvironmental features impair glutaminase inhibitor responsiveness.
    CONCLUSION: This study highlights the potential influence that both circulating and tumour-derived pyruvate can have on glutaminase inhibitor efficacy. Furthermore, it highlights the benefits of 3D spheroid cultures to model the features of the tumour microenvironment and improve the in vitro investigation of cancer metabolism-targeted therapeutics.
    Keywords:  Cancer metabolism; Glutaminase inhibitor; Glutamine; Glutaminolysis; Pyruvate; Triple-receptor negative breast Cancer
    DOI:  https://doi.org/10.1186/s12885-020-06885-3
  35. Nat Rev Cancer. 2020 May 29.
      Cell division and organismal development are exquisitely orchestrated and regulated processes. The dysregulation of the molecular mechanisms underlying these processes may cause cancer, a consequence of cell-intrinsic and/or cell-extrinsic events. Cellular DNA can be damaged by spontaneous hydrolysis, reactive oxygen species, aberrant cellular metabolism or other perturbations that cause DNA damage. Moreover, several environmental factors may damage the DNA, alter cellular metabolism or affect the ability of cells to interact with their microenvironment. While some environmental factors are well established as carcinogens, there remains a large knowledge gap of others owing to the difficulty in identifying them because of the typically long interval between carcinogen exposure and cancer diagnosis. DNA damage increases in cells harbouring mutations that impair their ability to correctly repair the DNA. Tumour predisposition syndromes in which cancers arise at an accelerated rate and in different organs - the equivalent of a sensitized background - provide a unique opportunity to examine how gene-environment interactions influence cancer risk when the initiating genetic defect responsible for malignancy is known. Understanding the molecular processes that are altered by specific germline mutations, environmental exposures and related mechanisms that promote cancer will allow the design of novel and effective preventive and therapeutic strategies.
    DOI:  https://doi.org/10.1038/s41568-020-0265-y
  36. Int J Obes (Lond). 2020 May 28.
       BACKGROUND: Obesity and its associated diseases are major health problems characterized by extensive metabolic disturbances. Understanding the causal connections between these phenotypes and variation in metabolite levels can uncover relevant biology and inform novel intervention strategies. Recent studies have combined metabolite profiling with genetic instrumental variable (IV) analysis (Mendelian randomization) to infer the direction of causality between metabolites and obesity, but often omitted a large portion of untargeted profiling data consisting of unknown, unidentified metabolite signals.
    METHODS: We expanded upon previous research by identifying body mass index (BMI)-associated metabolites in multiple untargeted metabolomics datasets, and then performing bidirectional IV analysis to classify metabolites based on their inferred causal relationships with BMI. Meta-analysis and pathway analysis of both known and unknown metabolites across datasets were enabled by our recently developed bioinformatics suite, PAIRUP-MS.
    RESULTS: We identified ten known metabolites that are more likely to be causes (e.g., alpha-hydroxybutyrate) or effects (e.g., valine) of BMI, or may have more complex bidirectional cause-effect relationships with BMI (e.g., glycine). Importantly, we also identified about five times more unknown than known metabolites in each of these three categories. Pathway analysis incorporating both known and unknown metabolites prioritized 40 enriched (p < 0.05) metabolite sets for the cause versus effect groups, providing further support that these two metabolite groups are linked to obesity via distinct biological mechanisms.
    CONCLUSIONS: These findings demonstrate the potential utility of our approach to uncover causal connections with obesity from untargeted metabolomics datasets. Combining genetically informed causal inference with the ability to map unknown metabolites across datasets provides a path to jointly analyze many untargeted datasets with obesity or other phenotypes. This approach, applied to larger datasets with genotype and untargeted metabolite data, should generate sufficient power for robust discovery and replication of causal biological connections between metabolites and various human diseases.
    DOI:  https://doi.org/10.1038/s41366-020-0603-x
  37. Nat Genet. 2020 May 25.
      Immunotherapy for metastatic colorectal cancer is effective only for mismatch repair-deficient tumors with high microsatellite instability that demonstrate immune infiltration, suggesting that tumor cells can determine their immune microenvironment. To understand this cross-talk, we analyzed the transcriptome of 91,103 unsorted single cells from 23 Korean and 6 Belgian patients. Cancer cells displayed transcriptional features reminiscent of normal differentiation programs, and genetic alterations that apparently fostered immunosuppressive microenvironments directed by regulatory T cells, myofibroblasts and myeloid cells. Intercellular network reconstruction supported the association between cancer cell signatures and specific stromal or immune cell populations. Our collective view of the cellular landscape and intercellular interactions in colorectal cancer provide mechanistic information for the design of efficient immuno-oncology treatment strategies.
    DOI:  https://doi.org/10.1038/s41588-020-0636-z
  38. iScience. 2020 May 11. pii: S2589-0042(20)30339-4. [Epub ahead of print]23(6): 101154
      Optic atrophy 1 (OPA1), a GTPase at the inner mitochondrial membrane involved in regulating mitochondrial fusion, stability, and energy output, is known to be crucial for neural development: Opa1 heterozygous mice show abnormal brain development, and inactivating mutations in OPA1 are linked to human neurological disorders. Here, we used genetically modified human embryonic and patient-derived induced pluripotent stem cells and reveal that OPA1 haploinsufficiency leads to aberrant nuclear DNA methylation and significantly alters the transcriptional circuitry in neural progenitor cells (NPCs). For instance, expression of the forkhead box G1 transcription factor, which is needed for GABAergic neuronal development, is repressed in OPA1+/- NPCs. Supporting this finding, OPA1+/- NPCs cannot give rise to GABAergic interneurons, whereas formation of glutamatergic neurons is not affected. Taken together, our data reveal that OPA1 controls nuclear DNA methylation and expression of key transcription factors needed for proper neural cell specification.
    Keywords:  Developmental Neuroscience; Neurogenetics
    DOI:  https://doi.org/10.1016/j.isci.2020.101154
  39. Cancer Cell. 2020 May 13. pii: S1535-6108(20)30215-4. [Epub ahead of print]
      Small cell lung cancer (SCLC) is a highly aggressive and lethal neoplasm. To identify candidate tumor suppressors we applied CRISPR/Cas9 gene inactivation screens to a cellular model of early-stage SCLC. Among the top hits was MAX, the obligate heterodimerization partner for MYC family proteins that is mutated in human SCLC. Max deletion increases growth and transformation in cells and dramatically accelerates SCLC progression in an Rb1/Trp53-deleted mouse model. In contrast, deletion of Max abrogates tumorigenesis in MYCL-overexpressing SCLC. Max deletion in SCLC resulted in derepression of metabolic genes involved in serine and one-carbon metabolism. By increasing serine biosynthesis, Max-deleted cells exhibit resistance to serine depletion. Thus, Max loss results in metabolic rewiring and context-specific tumor suppression.
    Keywords:  CRISPR-Cas9 genetic screens; MAX; MYC; SCLC; Transcriptional regulation; cancer; mouse model; serine and one-carbon metabolism; small cell lung cancer; tumor suppressor genes
    DOI:  https://doi.org/10.1016/j.ccell.2020.04.016
  40. Nat Med. 2020 May 29.
      PD-1 blockade has transformed the management of advanced clear cell renal cell carcinoma (ccRCC), but the drivers and resistors of the PD-1 response remain incompletely elucidated. Here, we analyzed 592 tumors from patients with advanced ccRCC enrolled in prospective clinical trials of treatment with PD-1 blockade by whole-exome and RNA sequencing, integrated with immunofluorescence analysis, to uncover the immunogenomic determinants of the therapeutic response. Although conventional genomic markers (such as tumor mutation burden and neoantigen load) and the degree of CD8+ T cell infiltration were not associated with clinical response, we discovered numerous chromosomal alterations associated with response or resistance to PD-1 blockade. These advanced ccRCC tumors were highly CD8+ T cell infiltrated, with only 27% having a non-infiltrated phenotype. Our analysis revealed that infiltrated tumors are depleted of favorable PBRM1 mutations and enriched for unfavorable chromosomal losses of 9p21.3, as compared with non-infiltrated tumors, demonstrating how the potential interplay of immunophenotypes with somatic alterations impacts therapeutic efficacy.
    DOI:  https://doi.org/10.1038/s41591-020-0839-y
  41. Mol Biol Cell. 2020 Jun 01. 31(12): 1201-1205
      Many different enzymes in intermediate metabolism dynamically assemble filamentous polymers in cells, often in response to changes in physiological conditions. Most of the enzyme filaments known to date have only been observed in cells, but in a handful of cases structural and biochemical studies have revealed the mechanisms and consequences of assembly. In general, enzyme polymerization functions as a mechanism to allosterically tune enzyme kinetics, and it may play a physiological role in integrating metabolic signaling. Here, we highlight some principles of metabolic filaments by focusing on two well-studied examples in nucleotide biosynthesis pathways-inosine-5'-monophosphate (IMP) dehydrogenase and cytosine triphosphate (CTP) synthase.
    DOI:  https://doi.org/10.1091/mbc.E18-10-0675
  42. J Intern Med. 2020 Jun;287(6): 592-608
      Mitochondrial medicine is a field that expanded exponentially in the last 30 years. Individually rare, mitochondrial diseases as a whole are probably the most frequent genetic disorder in adults. The complexity of their genotype-phenotype correlation, in terms of penetrance and clinical expressivity, natural history and diagnostic algorithm derives from the dual genetic determination. In fact, in addition to the about 1.500 genes encoding mitochondrial proteins that reside in the nuclear genome (nDNA), we have the 13 proteins encoded by the mitochondrial genome (mtDNA), for which 22 specific tRNAs and 2 rRNAs are also needed. Thus, besides Mendelian genetics, we need to consider all peculiarities of how mtDNA is inherited, maintained and expressed to fully understand the pathogenic mechanisms of these disorders. Yet, from the initial restriction to the narrow field of oxidative phosphorylation dysfunction, the landscape of mitochondrial functions impinging on cellular homeostasis, driving life and death, is impressively enlarged. Finally, from the clinical standpoint, starting from the neuromuscular field, where brain and skeletal muscle were the primary targets of mitochondrial dysfunction as energy-dependent tissues, after three decades virtually any subspecialty of medicine is now involved. We will summarize the key clinical pictures and pathogenic mechanisms of mitochondrial diseases in adults.
    Keywords:  mitochondria; mitochondrial diseases; mtDNA; neurology; neuromuscular disorders
    DOI:  https://doi.org/10.1111/joim.13064
  43. Front Immunol. 2020 ;11 757
      The imbalance of oxygen delivery and oxygen consumption resulting in insufficient tissue oxygenation is pathognomonic for all forms of shock. Mitochondrial function plays an important role in the cellular oxygen metabolism and has been shown to impact a variety of diseases in the intensive care setting, specifically sepsis. Clinical assessment of tissue oxygenation and mitochondrial function remains elusive. The in vivo protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) allows the direct, non-invasive measurement of mitochondrial oxygen tension (mitoPO2) in the human skin. Our recently established measurement protocol for the Cellular Oxygen Metabolism (COMET) Monitor, a novel device employing the PpIX-TSLT, additionally allows the evaluation of oxygen consumption (mitoVO2) and delivery (mitoDO2). In the intensive care setting, these variables might provide new insight into mitochondrial oxygen metabolism and especially mitoDO2 might be a surrogate parameter of microcirculatory function. However, the feasibility of the PpIX-TSLT in critically ill patients has not been analyzed systematically. In this interim study analysis, we evaluated PpIX-TSLT measurements of 40 patients during the acute phase of sepsis. We assessed (a) potential adverse side effects of the method, (b) the rate of analyzable measurements, (c) the stability of mitoPO2, mitoVO2, and mitoDO2, and (d) potential covariates. Due to excessive edema in patients with sepsis, we specifically analyzed the association of patients' hydration status, assessed by bioimpedance analysis (BIA), with the aforementioned variables. We observed no side effects and acquired analyzable measurements sessions in 92.5% of patients (n = 37/40). Different measures of stability indicated moderate to good repeatability of the PpIX-TSLT variables within one session of multiple measurements. The determined limits of agreement and minimum detectable differences may be helpful in identifying outlier measurements. In conjunction with signal quality they mark a first step in developing a previously unavailable standardized measurement quality protocol. Notably, higher levels of hydration were associated with lower mitochondrial oxygen tension. We conclude that COMET measurements are viable in patients with sepsis. To validate the clinical and diagnostic relevance of the PpIX-TSLT using the COMET in the intensive care setting, future studies in critically ill patients and healthy controls are needed.
    Keywords:  COMET; cellular oxygen metabolism; critically ill patients; mitochondrial dysfunction; mitochondrial oxygen metabolism; mitochondrial oxygen tension; protoporphyrin IX-triplet state lifetime technique; sepsis
    DOI:  https://doi.org/10.3389/fimmu.2020.00757
  44. Nat Cell Biol. 2020 May 25.
      The dynamin GTPase is known to bundle actin filaments, but the underlying molecular mechanism and physiological relevance remain unclear. Our genetic analyses revealed a function of dynamin in propelling invasive membrane protrusions during myoblast fusion in vivo. Using biochemistry, total internal reflection fluorescence microscopy, electron microscopy and cryo-electron tomography, we show that dynamin bundles actin while forming a helical structure. At its full capacity, each dynamin helix captures 12-16 actin filaments on the outer rim of the helix. GTP hydrolysis by dynamin triggers disassembly of fully assembled dynamin helices, releasing free dynamin dimers/tetramers and facilitating Arp2/3-mediated branched actin polymerization. The assembly/disassembly cycles of dynamin promote continuous actin bundling to generate mechanically stiff actin super-bundles. Super-resolution and immunogold platinum replica electron microscopy revealed dynamin along actin bundles at the fusogenic synapse. These findings implicate dynamin as a unique multifilament actin-bundling protein that regulates the dynamics and mechanical strength of the actin cytoskeletal network.
    DOI:  https://doi.org/10.1038/s41556-020-0519-7
  45. Proc Natl Acad Sci U S A. 2020 May 27. pii: 202002567. [Epub ahead of print]
      Clear cell renal cell carcinoma (ccRCC) is characterized by loss of tumor suppressor Von Hippel Lindau (VHL) function, which leads to accumulation of hypoxia inducible factor α (including HIF1α and HIF2α). HIF2α was previously reported to be one of the major oncogenic drivers in ccRCC, however, its therapeutic targets remain challenging. Here we performed a deubiquitinase (DUB) complementary DNA (cDNA) library binding screen and discovered that ubiquitin-specific peptidase 37 (USP37) is a DUB that binds HIF2α and promotes HIF2α deubiquitination. As a result, USP37 promotes HIF2α protein stability in an enzymatically dependent manner, and depletion of USP37 leads to HIF2α down-regulation in ccRCC. Functionally, USP37 depletion causes decreased cell proliferation measured by MTS, two-dimensional (2D) colony formation as well as three-dimensional (3D) anchorage- independent growth. USP37 is also essential for maintaining kidney tumorigenesis in an orthotopic xenograft model and its depletion leads to both decreased primary kidney tumorigenesis and spontaneous lung metastasis. Our results suggest that USP37 is a potential therapeutic target in ccRCC.
    Keywords:  HIF2α; USP37; ccRCC; deubiquitination
    DOI:  https://doi.org/10.1073/pnas.2002567117
  46. Mol Genet Metab. 2020 May 22. pii: S1096-7192(20)30121-9. [Epub ahead of print]
      
    DOI:  https://doi.org/10.1016/j.ymgme.2020.05.007