bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2021‒06‒06
57 papers selected by
Christian Frezza,



  1. Proc Natl Acad Sci U S A. 2021 Jun 08. pii: e2019740118. [Epub ahead of print]118(23):
      Reactivation of p53 in established tumors typically results in one of two cell fates, cell cycle arrest or apoptosis, but it remains unclear how this cell fate is determined. We hypothesized that high mitochondrial priming prior to p53 reactivation would lead to apoptosis, while low priming would lead to survival and cell cycle arrest. Using a panel of Kras-driven, p53 restorable cell lines derived from genetically engineered mouse models of lung adenocarcinoma and sarcoma (both of which undergo cell cycle arrest upon p53 restoration), as well as lymphoma (which instead undergo apoptosis), we show that the level of mitochondrial apoptotic priming is a critical determinant of p53 reactivation outcome. Cells with high initial priming (e.g., lymphomas) lacked sufficient reserve antiapoptotic capacity and underwent apoptosis after p53 restoration. Forced BCL-2 or BCL-XL expression reduced priming and resulted in survival and cell cycle arrest. Cells with low initial priming (e.g., lung adenocarcinoma and sarcoma) survived and proceeded to arrest in the cell cycle. When primed by inhibition of their antiapoptotic proteins using genetic (BCL-2 or BCL-XL deletion or BAD overexpression) or pharmacologic (navitoclax) means, apoptosis resulted upon p53 restoration in vitro and in vivo. These data demonstrate that mitochondrial apoptotic priming is a key determining factor of cell fate upon p53 activation. Moreover, it is possible to enforce apoptotic cell fate following p53 activation in less primed cells using p53-independent drugs that increase apoptotic priming, including BH3 mimetic drugs.
    Keywords:  apoptosis; cell cycle arrest; cell fate; p53
    DOI:  https://doi.org/10.1073/pnas.2019740118
  2. Pharmaceutics. 2021 May 20. pii: 762. [Epub ahead of print]13(5):
      Drug resistance is the main obstacle for a successful cancer therapy. There are many mechanisms by which cancers avoid drug-mediated death, including alterations in cellular metabolism and apoptotic programs. Mitochondria represent the cell's powerhouse and the connection between carbohydrate, lipid and proteins metabolism, as well as crucial controllers of apoptosis, playing an important role not only in tumor growth and progression, but also in drug response. Alterations in tricarboxylic acid cycle (TCA) caused by mutations in three TCA enzymes-isocitrate dehydrogenase, succinate dehydrogenase and fumarate hydratase-lead to the accumulation of 2-hydroxyglutarate, succinate and fumarate respectively, collectively known as oncometabolites. Oncometabolites have pleiotropic effects on cancer biology. For instance, they generate a pseudohypoxic phenotype and induce epigenetic changes, two factors that may promote cancer drug resistance leading to disease progression and poor therapy outcome. This review sums up the most recent findings about the role of TCA-derived oncometabolites in cancer aggressiveness and drug resistance, highlighting possible pharmacological strategies targeting oncometabolites production in order to improve the efficacy of cancer treatment.
    Keywords:  cancer drug resistance; cancer metabolism; mitochondrial oncometabolites
    DOI:  https://doi.org/10.3390/pharmaceutics13050762
  3. Nat Rev Rheumatol. 2021 Jun 03.
      The physiologically hypoxic intervertebral disc and cartilage rely on the hypoxia-inducible factor (HIF) family of transcription factors to mediate cellular responses to changes in oxygen tension. During homeostatic development, oxygen-dependent prolyl hydroxylases, circadian clock proteins and metabolic intermediates control the activities of HIF1 and HIF2 in these tissues. Mechanistically, HIF1 is the master regulator of glycolytic metabolism and cytosolic lactate levels. In addition, HIF1 regulates mitochondrial metabolism by promoting flux through the tricarboxylic acid cycle, inhibiting downsteam oxidative phosphorylation and controlling mitochondrial health through modulation of the mitophagic pathway. Accumulation of metabolic intermediates from HIF-dependent processes contribute to intracellular pH regulation in the disc and cartilage. Namely, to prevent changes in intracellular pH that could lead to cell death, HIF1 orchestrates a bicarbonate buffering system in the disc, controlled by carbonic anhydrase 9 (CA9) and CA12, sodium bicarbonate cotransporters and an intracellular H+/lactate efflux mechanism. In contrast to HIF1, the role of HIF2 remains elusive; in disorders of the disc and cartilage, its function has been linked to both anabolic and catabolic pathways. The current knowledge of hypoxic cell metabolism and regulation of HIF1 activity provides a strong basis for the development of future therapies designed to repair the degenerative disc.
    DOI:  https://doi.org/10.1038/s41584-021-00621-2
  4. Nat Cancer. 2021 Feb;2(2): 189-200
      Alterations in components of the SWI/SNF chromatin-remodeling complex occur in ~20% of all human cancers. For example, ARID1A is mutated in up to 62% of clear cell ovarian carcinoma (OCCC), a disease currently lacking effective therapies. Here we show that ARID1A mutation creates a dependence on glutamine metabolism. SWI/SNF represses glutaminase (GLS1) and ARID1A inactivation upregulates GLS1. ARID1A inactivation increases glutamine utilization and metabolism through the tricarboxylic acid cycle to support aspartate synthesis. Indeed, glutaminase inhibitor CB-839 suppresses the growth of ARID1A mutant, but not wildtype, OCCCs in both orthotopic and patient-derived xenografts. In addition, glutaminase inhibitor CB-839 synergizes with immune checkpoint blockade anti-PDL1 antibody in a genetic OCCC mouse model driven by conditional Arid1a inactivation. Our data indicate that pharmacological inhibition of glutaminase alone or in combination with immune checkpoint blockade represents an effective therapeutic strategy for cancers involving alterations in the SWI/SNF complex such as ARID1A mutations.
    DOI:  https://doi.org/10.1038/s43018-020-00160-x
  5. Autophagy. 2021 Jun 04.
      Cardiac function is highly reliant on mitochondrial oxidative metabolism and quality control. The circadian Clock gene is critically linked to vital physiological processes including mitochondrial fission, fusion and bioenergetics; however, little is known of how the Clock gene regulates these vital processes in the heart. Herein, we identified a putative circadian CLOCK-mitochondrial interactome that gates an adaptive survival response during myocardial ischemia. We show by transcriptome and gene ontology mapping in CLOCK Δ19/Δ19 mouse that Clock transcriptionally coordinates the efficient removal of damaged mitochondria during myocardial ischemia by directly controlling transcription of genes required for mitochondrial fission, fusion and macroautophagy/autophagy. Loss of Clock gene activity impaired mitochondrial turnover resulting in the accumulation of damaged reactive oxygen species (ROS)-producing mitochondria from impaired mitophagy. This coincided with ultrastructural defects to mitochondria and impaired cardiac function. Interestingly, wild type CLOCK but not mutations of CLOCK defective for E-Box binding or interaction with its cognate partner ARNTL/BMAL-1 suppressed mitochondrial damage and cell death during acute hypoxia. Interestingly, the autophagy defect and accumulation of damaged mitochondria in CLOCK-deficient cardiac myocytes were abrogated by restoring autophagy/mitophagy. Inhibition of autophagy by ATG7 knockdown abrogated the cytoprotective effects of CLOCK. Collectively, our results demonstrate that CLOCK regulates an adaptive stress response critical for cell survival by transcriptionally coordinating mitochondrial quality control mechanisms in cardiac myocytes. Interdictions that restore CLOCK activity may prove beneficial in reducing cardiac injury in individuals with disrupted circadian CLOCK.
    Keywords:  autophagy; clock; metabolism; mitochondrion; myocardial infarction
    DOI:  https://doi.org/10.1080/15548627.2021.1938913
  6. Methods Mol Biol. 2021 ;2276 129-141
      Cellular energy metabolism is regulated by complex metabolic pathways. Although anaerobic glycolysis was reported as a primary source of energy in cancer leading to a high rate of lactate production, current evidence shows that the main energy source supporting cancer cell metabolism relies on mitochondrial metabolism. Mitochondria are the key organelle maintaining optimal cellular energy levels. MitoPlate™ S-1 provides a highly reproducible bioenergetics tool to analyze the electron flow rate in live cells. Measuring the rates of electron flow into and through the electron transport chain using different NADH and FADH2-producing metabolic substrates enables the assessment of mitochondrial functionality. MitoPlate™ S-1 are 96-well microplates pre-coated with different substrates used as probes to examine the activity of mitochondrial metabolic pathways based on a colorimetric assay. A comparative metabolic analysis between cell lines or primary cells allows to establish a specific metabolic profile and to detect possible alterations of the mitochondrial function of a tumor cell. Moreover, the direct measurements of electron flux triggered by metabolic pathway activation could highlight targets for potential drug candidates.
    Keywords:  Bioinformatics; Cancer metabolism; Electron transport chain; Mitochondrial respiration; Tricarboxylic acid cycle
    DOI:  https://doi.org/10.1007/978-1-0716-1266-8_9
  7. Cell Rep. 2021 Jun 01. pii: S2211-1247(21)00559-3. [Epub ahead of print]35(9): 109210
      Natural killer (NK) cells are cytotoxic lymphocytes capable of rapid cytotoxicity, cytokine secretion, and clonal expansion. To sustain such energetically demanding processes, NK cells must increase their metabolic capacity upon activation. However, little is known about the metabolic requirements specific to NK cells in vivo. To gain greater insight, we investigated the role of aerobic glycolysis in NK cell function and demonstrate that their glycolytic rate increases rapidly following viral infection and inflammation, prior to that of CD8+ T cells. NK cell-specific deletion of lactate dehydrogenase A (LDHA) reveals that activated NK cells rely on this enzyme for both effector function and clonal proliferation, with the latter being shared with T cells. As a result, LDHA-deficient NK cells are defective in their anti-viral and anti-tumor protection. These findings suggest that aerobic glycolysis is a hallmark of NK cell activation that is key to their function.
    Keywords:  B16-F10; CD8(+) T cells; Ly49H; MCMV; clonal proliferation; glycolysis; lactate dehydrogenase A; metabolism; natural killer cells; tumor surveillance
    DOI:  https://doi.org/10.1016/j.celrep.2021.109210
  8. Methods Mol Biol. 2021 ;2277 69-89
      The mitochondrial calcium uniporter (MCU ) is an essential protein of the inner mitochondrial membrane that mediates the uptake of calcium into mitochondria of virtually all mammalian tissues, regulating cell metabolism, signaling, and death. MCU-mediated calcium uptake has been shown to play a pathophysiological role in diverse human disease contexts, which qualifies this channel as a druggable target for therapeutic intervention.Here, we present a protocol to perform drug screens to identify effective and specific MCU-targeting inhibitors. The methodology is based on the use of cryopreserved mitochondria that are isolated from a yeast strain engineered to express the human MCU and its essential regulator EMRE together with the luminescence calcium sensor aequorin. Yeast mitochondria with a functionally reconstituted MCU-mediated calcium uptake are then employed as a ready-to-use screening reagent. False discovery rate is further minimized by energizing mitochondria with D-lactate in a mannitol/sucrose-based medium, which provides a mean to discriminate between direct and secondary effects of drugs on mitochondrial calcium uptake. This screening assay is sensitive and robust and can be easily implemented in any laboratory.
    Keywords:  Aequorin; Calcium; Drug screening; Luminescence assay; Mitochondria; Mitochondrial calcium uniporter; Yeast
    DOI:  https://doi.org/10.1007/978-1-0716-1270-5_5
  9. Cancer Genet. 2021 May 18. pii: S2210-7762(21)00108-3. [Epub ahead of print]256-257 91-99
      PURPOSE: This study was designed to identify mitochondrial (mt) DNA variations in primary and metastatic uveal melanoma (UM) cell lines and their relation with cell metabolism to gain insight into metastatic progression.METHOD: The entire mtDNA genomes were sequenced using Sanger sequencing from two primary UM cell lines (92.1 and MEL270) and two cell lines (OMM2.3 and OMM2.5) derived from liver metastases of the MEL270 patient. The mtDNA copy numbers determined by the ratio of nDNA versus mtDNA. qRT-PCR was used to evaluate expression levels of mitochondrial biogenesis genes.
    RESULTS: Sequencing showed that cell line MEL270 and metastases-derived OMM2.3 and OMM2.5 cell lines had homoplasmic single nucleotide polymorphisms (SNPs) representing J1c7a haplogroup, whereas 92.1 cells had mtDNA H31a haplogroup. mtDNA copy numbers were significantly higher in primary cell lines. The metastatic UM cells showed down-regulation of POLG, TFAM, NRF-1 and SIRT1 compared to their primary MEL270 cells. PGC-1α was downregulated in 92.1 and upregulated in MEL270, OMM2.3 and OMM2.5.
    CONCLUSIONS: Our finding suggests that within metastatic cells, the heteroplasmic SNPs, copy numbers and mitochondrial biogenesis genes are modulated differentially compared to their primary UM cells. Therefore, investigating pathogenic mtDNA variants associated with cancer metabolic susceptibility may provide future therapeutic strategies in metastatic UM.
    Keywords:  Biogenesis; Eye disease; Mitochondria; Ocular oncology; Uveal melanoma
    DOI:  https://doi.org/10.1016/j.cancergen.2021.05.002
  10. Methods Mol Biol. 2021 ;2276 227-234
      In mitochondrial oxidative phosphorylation (Ox-Phos), individual electron transport chain complexes are thought to assemble into supramolecular entities termed supercomplexes (SCs). The technique of blue native (BN) gel electrophoresis has emerged as the method of choice for analyzing SCs. However, the process of sample extraction for BN gel analysis is somewhat tedious and introduces the possibility for experimental artifacts. Here we outline a streamlined method that eliminates a centrifugation step and provides a more representative sampling of a population of mitochondria on the final gel. Using this method, we show that SC composition does not appear to change dynamically with altered mitochondrial function.
    Keywords:  Blue-native; Clear-native; Mitochondria; Permeability transition pore; Respiration; Supercomplexes
    DOI:  https://doi.org/10.1007/978-1-0716-1266-8_17
  11. Biomolecules. 2021 May 23. pii: 786. [Epub ahead of print]11(6):
      The notion of mitochondria being involved in the decoding and shaping of intracellular Ca2+ signals has been circulating since the end of the 19th century. Despite that, the molecular identity of the channel that mediates Ca2+ ion transport into mitochondria remained elusive for several years. Only in the last decade, the genes and pathways responsible for the mitochondrial uptake of Ca2+ began to be cloned and characterized. The gene coding for the pore-forming unit of the mitochondrial channel was discovered exactly 10 years ago, and its product was called mitochondrial Ca2+ uniporter or MCU. Before that, only one of its regulators, the mitochondria Ca2+ uptake regulator 1, MICU1, has been described in 2010. However, in the following years, the scientific interest in mitochondrial Ca2+ signaling regulation and physiological role has increased. This shortly led to the identification of many of its components, to the description of their 3D structure, and the characterization of the uniporter contribution to tissue physiology and pathology. In this review, we will summarize the most relevant achievements in the history of mitochondrial Ca2+ studies, presenting a chronological overview of the most relevant and landmarking discoveries. Finally, we will explore the impact of mitochondrial Ca2+ signaling in the context of muscle physiology, highlighting the recent advances in understanding the role of the MCU complex in the control of muscle trophism and metabolism.
    Keywords:  Ca2+ signaling; MCU; mitochondrial Ca2+ uniporter; mitochondrial metabolism; skeletal muscle mitochondria
    DOI:  https://doi.org/10.3390/biom11060786
  12. Methods Mol Biol. 2021 ;2277 15-37
      Mitochondrial transplantation is a novel therapeutic intervention to treat ischemia-reperfusion-related disorders. This approach uses replacement of native mitochondria with viable, respiration-competent mitochondria isolated from non-ischemic tissue obtained from the patient's own body, to overcome the many deleterious effects of ischemia-reperfusion injury on native mitochondria. The safety and efficacy of this methodology has been demonstrated in cell culture, animal models and has been shown to be safe and efficacious in a phase I clinical trial in pediatric cardiac patients with ischemia-reperfusion injury. These studies have demonstrated that mitochondrial transplantation rescues myocardial cellular viability and significantly enhances postischemic myocardial function following ischemia-reperfusion injury. Herein, we describe methodologies for the delivery of isolated mitochondria.
    Keywords:  Direct injection; Intracoronary delivery; Ischemia-reperfusion; Mitochondrial isolation; Mitochondrial transplantation
    DOI:  https://doi.org/10.1007/978-1-0716-1270-5_2
  13. Stem Cells. 2021 Jun 05.
      Mitochondria are organelles with recognized key roles in cellular homeostasis, including bioenergetics, redox, calcium signaling, and cell death. Mitochondria are essential for neuronal function, given the high energy demands of the human brain. Consequently, mitochondrial diseases affecting oxidative phosphorylation (OXPHOS) commonly exhibit neurological impairment. Emerging evidence suggests that mitochondria are important not only for mature postmitotic neurons but also for the regulation of neural progenitor cells (NPCs) during the process of neurogenesis. These recent findings put mitochondria as central regulator of cell fate decisions during brain development. OXPHOS mutations may disrupt the function of NPCs and thereby impair the metabolic programming required for neural fate commitment. Promoting the mitochondrial function of NPCs could therefore represent a novel interventional approach against incurable mitochondrial diseases.
    Keywords:  NPCs; iPSCs; mitochondria; mitochondrial diseases; neurogenesis
    DOI:  https://doi.org/10.1002/stem.3425
  14. Cell Metab. 2021 Jun 01. pii: S1550-4131(21)00227-8. [Epub ahead of print]33(6): 1071-1072
      Tumor cells utilize glucose to engage in aerobic glycolysis, fulfilling their metabolic demands for extensive proliferation. A recent study in Nature discovers that tumor-infiltrating myeloid cells exhibit a superior glucose uptake capacity over tumor cells, which present enhanced glutamine metabolism, suggesting that nutrient partitioning in the TME might be more complex than previously thought.
    DOI:  https://doi.org/10.1016/j.cmet.2021.05.010
  15. Biochim Biophys Acta Proteins Proteom. 2021 May 27. pii: S1570-9639(21)00086-8. [Epub ahead of print]1869(9): 140680
      Beta-cell death and dysfunction are involved in the development of type 1 and 2 diabetes. ER-stress impairs beta-cells function resulting in pro-apoptotic stimuli that promote cell death. Hence, the identification of protective mechanisms in response to ER-stress could lead to novel therapeutic targets and insight in the pathology of these diseases. Here, we report the identification of proteins involved in dysregulated pathways upon thapsigargin treatment of MIN6 cells. Utilizing quantitative proteomics we identified upregulation of proteins involved in protein folding, unfolded protein response, redox homeostasis, proteasome processes associated with endoplasmic reticulum and downregulation of TCA cycle, cellular respiration, lipid metabolism and ribosome assembly processes associated to mitochondria and eukaryotic initiation translation factor components. Subsequently, pro-inflammatory cytokine treatment was performed to mimic pathological changes observed in beta-cells during diabetes. Cytokines induced ER stress and impaired mitochondrial function in beta-cells corroborating the results obtained with the proteomic approach. HSPB1 levels are increased by prolactin on pancreatic beta-cells and this protein is a key factor for cytoprotection although its role has not been fully elucidated. Here we show that while up-regulation of HSPB1 was able to restore the mitochondrial dysfunction induced by beta-cells' exposure to inflammatory cytokines, silencing of this chaperone abrogated the beneficial effects promoted by PRL. Taken together, our results outline the importance of HSPB1 to mitigate beta-cell dysfunction. Further studies are needed to elucidate its role in diabetes.
    Keywords:  Diabetes; ER stress; HSPB1; Mass spectrometry; Mitochondrial bioenergetics; Pancreatic beta cells; Proteomics; UPR
    DOI:  https://doi.org/10.1016/j.bbapap.2021.140680
  16. Methods Mol Biol. 2021 ;2277 187-201
      Mitochondria, similar to living cells and organelles, have a negative membrane potential, which ranges between (-108) and (150) mV as compared to (-70) and (-90) mV of the plasma membrane. Therefore, permeable lipophilic cations tend to accumulate in the mitochondria. Those cations which exhibit fluorescence activity after accumulation into energized systems are widely used to decipher changes in membrane potential by imaging techniques. Here we describe the use of two different dyes for labeling mitochondrial membrane potential (Δψm) in live cells. One is the lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazol-carbocyanine iodide (JC-1), which alters reversibly its color from green (J-monomer, at its low concentration in the cytosol) to red (J-aggregates, at its high concentration in active mitochondria) with increasing mitochondrial membrane potential (Δψm). The other is MitoTracker® Orange, a mitochondrion-selective probe which passively diffuses across the plasma membrane and accumulates in active mitochondria depending on their Δψm. We show that in addition to changes in Δψm, these specific dyes can be used to follow alterations in mitochondrial distribution and mitochondrial network connectivity. We suggest that JC-1 is a preferable probe to compare between different cell types and cell state, as a red to green ratio of fluorescence intensities is used for analysis. This ratio depends only on the mitochondrial membrane potential and not on other cellular and/or mitochondrial-dependent or independent factors that may alter, for example, due to treatment or disease state. However, in cells labeled either with green or red fluorescence protein, JC-1 cannot be used. Therefore, other dyes are preferable. We demonstrate various applications of JC-1 and MitoTracker Orange staining to study mitochondrial abnormalities in different cell types derived from schizophrenia patients and healthy subjects.
    Keywords:  JC-1; MitoTracker Orange; Mitochondrial distribution; Mitochondrial imaging; Mitochondrial membrane potential; Mitochondrial network connectivity; Schizophrenia
    DOI:  https://doi.org/10.1007/978-1-0716-1270-5_13
  17. Pharmaceutics. 2021 May 28. pii: 810. [Epub ahead of print]13(6):
      Mitochondria are intracellular energy generators involved in various cellular processes. Therefore, mitochondrial dysfunction often leads to multiple serious diseases, including neurodegenerative and cardiovascular diseases. A better understanding of the underlying mitochondrial dysfunctions of the molecular mechanism will provide important hints on how to mitigate the symptoms of mitochondrial diseases and eventually cure them. In this review, we first summarize the key parts of the genetic processes that control the physiology and functions of mitochondria and discuss how alterations of the processes cause mitochondrial diseases. We then list up the relevant core genetic components involved in these processes and explore the mutations of the components that link to the diseases. Lastly, we discuss recent attempts to apply multiple genetic methods to alleviate and further reverse the adverse effects of the core component mutations on the physiology and functions of mitochondria.
    Keywords:  gene therapy; heteroplasmy; mitochondrial DNA; mitochondrial disease; mitochondrial gene delivery
    DOI:  https://doi.org/10.3390/pharmaceutics13060810
  18. Life (Basel). 2021 May 11. pii: 432. [Epub ahead of print]11(5):
      The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
    Keywords:  mitochondrial dysfunction; mitochondrial proteostasis; neurodegeneration; protein import; respiratory complex assembly; supercomplexes
    DOI:  https://doi.org/10.3390/life11050432
  19. Int J Mol Sci. 2021 May 25. pii: 5574. [Epub ahead of print]22(11):
      Over the last decades, the study of cancer metabolism has returned to the forefront of cancer research and challenged the role of genetics in the understanding of cancer development. One of the major impulses of this new trend came from the discovery of oncometabolites, metabolic intermediates whose abnormal cellular accumulation triggers oncogenic signalling and tumorigenesis. These findings have led to reconsideration and support for the long-forgotten hypothesis of Warburg of altered metabolism as oncogenic driver of cancer and started a novel paradigm whereby mitochondrial metabolites play a pivotal role in malignant transformation. In this review, we describe the evolution of the cancer metabolism research from a historical perspective up to the oncometabolites discovery that spawned the new vision of cancer as a metabolic disease. The oncometabolites' mechanisms of cellular transformation and their contribution to the development of new targeted cancer therapies together with their drawbacks are further reviewed and discussed.
    Keywords:  cancer; epigenetics; metabolism; metabolomics; oncometabolites; therapy
    DOI:  https://doi.org/10.3390/ijms22115574
  20. J Clin Invest. 2021 Jun 01. pii: 135821. [Epub ahead of print]131(11):
      Skeletal muscle wasting is commonly associated with chronic kidney disease (CKD), resulting in increased morbidity and mortality. However, the link between kidney and muscle function remains poorly understood. Here, we took a complementary interorgan approach to investigate skeletal muscle wasting in CKD. We identified increased production and elevated blood levels of soluble pro-cachectic factors, including activin A, directly linking experimental and human CKD to skeletal muscle wasting programs. Single-cell sequencing data identified the expression of activin A in specific kidney cell populations of fibroblasts and cells of the juxtaglomerular apparatus. We propose that persistent and increased kidney production of pro-cachectic factors, combined with a lack of kidney clearance, facilitates a vicious kidney/muscle signaling cycle, leading to exacerbated blood accumulation and, thereby, skeletal muscle wasting. Systemic pharmacological blockade of activin A using soluble activin receptor type IIB ligand trap as well as muscle-specific adeno-associated virus-mediated downregulation of its receptor ACVR2A/B prevented muscle wasting in different mouse models of experimental CKD, suggesting that activin A is a key factor in CKD-induced cachexia. In summary, we uncovered a crosstalk between kidney and muscle and propose modulation of activin signaling as a potential therapeutic strategy for skeletal muscle wasting in CKD.
    Keywords:  Chronic kidney disease; Muscle; Muscle Biology; Nephrology
    DOI:  https://doi.org/10.1172/JCI135821
  21. Cell Metab. 2021 Jun 01. pii: S1550-4131(21)00229-1. [Epub ahead of print]33(6): 1065-1067
      The molecular regulation of cancer metastasis is not fully understood. In this issue of Cell Metabolism, Zhang et al. (2021) discover that creatine promotes cancer metastasis in mice by promoting activation of the MPS1-Smad2/3 axis.
    DOI:  https://doi.org/10.1016/j.cmet.2021.05.012
  22. Metabolites. 2021 May 30. pii: 350. [Epub ahead of print]11(6):
      In modern oncology, the analysis and evaluation of treatment response are still challenging. Hence, we used a 13C-guided approach to study the impacts of the small molecule dichloroacetate (DCA) upon the metabolic response of pancreatic cancer cells. Two different oncogenic PI3K-driven pancreatic cancer cell lines, 9580 and 10,158, respectively, were treated with 75 mM DCA for 18 h. In the presence of [U-13C6]glucose, the effects of DCA treatment in the core carbon metabolism were analyzed in these cells using gas chromatography-mass spectrometry (GC/MS). 13C-enrichments and isotopologue profiles of key amino acids revealed considerable effects of the DCA treatment upon glucose metabolism. The DCA treatment of the two pancreatic cell lines resulted in a significantly decreased incorporation of [U-13C6]glucose into the amino acids alanine, aspartate, glutamate, glycine, proline and serine in treated, but not in untreated, cancer cells. For both cell lines, the data indicated some activation of pyruvate dehydrogenase with increased carbon flux via the TCA cycle, but also massive inhibition of glycolytic flux and amino acid biosynthesis presumably by inhibition of the PI3K/Akt/mTORC axis. Together, it appears worthwhile to study the early treatment response in DCA-guided or accompanied cancer therapy in more detail, since it could open new avenues for improved diagnosis and therapeutic protocols of cancer.
    Keywords:  [U-13C6]glucose; dichloroacetate (DCA); isotopologue profiling; pancreatic cancer
    DOI:  https://doi.org/10.3390/metabo11060350
  23. Cell Metab. 2021 Jun 01. pii: S1550-4131(21)00228-X. [Epub ahead of print]33(6): 1069-1071
      The repair and removal of damaged mitochondria is essential for sustaining cellular and tissue homeostasis. Now in Cell, Jiao et al. (2021) describe a novel mechanism of such quality control in which damaged mitochondria move to the plasma membrane where they are "packaged" and left behind the trailing edge of migrating cells.
    DOI:  https://doi.org/10.1016/j.cmet.2021.05.011
  24. Cell Rep. 2021 Jun 01. pii: S2211-1247(21)00558-1. [Epub ahead of print]35(9): 109209
      Natural killer (NK) cell effector functions are dependent on metabolic regulation of cellular function; however, less is known about in vivo metabolic pathways required for NK cell antiviral function. Mice with an inducible NK-specific deletion of Cox10, which encodes a component of electron transport chain complex IV, were generated to investigate the role of oxidative phosphorylation in NK cells during murine cytomegalovirus (MCMV) infection. Ncr1-Cox10Δ/Δ mice had normal numbers of NK cells but impaired expansion of antigen-specific Ly49H+ NK cells and impaired NK cell memory formation. Proliferation in vitro and homeostatic expansion were intact, indicating a specific metabolic requirement for antigen-driven proliferation. Cox10-deficient NK cells upregulated glycolysis, associated with increased AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) activation, although this was insufficient to protect the host. These data demonstrate that oxidative metabolism is required for NK cell antiviral responses in vivo.
    Keywords:  Cox10; NK cells; metabolism; murine cytomegalovirus; oxidative phosphorylation; proliferation
    DOI:  https://doi.org/10.1016/j.celrep.2021.109209
  25. Methods Mol Biol. 2021 ;2276 87-102
      Mitochondrial retrograde signaling is a mitochondria-to-nucleus communication pathway, conserved from yeast to humans, by which dysfunctional mitochondria relay signals that lead to cell stress adaptation in physiopathological conditions via changes in nuclear gene expression. The most comprehensive picture of components and regulation of retrograde signaling has been obtained in Saccharomyces cerevisiae, where retrograde-target gene expression is regulated by RTG genes. In this chapter, we describe methods to measure mitochondrial retrograde pathway activation at the level of mRNA and protein products in yeast model systems, including cell suspensions and microcolonies. In particular, we will focus on three major procedures: mRNA levels of RTG-target genes, such as those encoding for peroxisomal citrate synthase (CIT2), aconitase, and NAD+-specific isocitrate dehydrogenase subunit 1 by real-time PCR; expression analysis of CIT2-gene protein product (Cit2p-GFP) by Western blot and fluorescence microscopy; the phosphorylation status of transcriptional factor Rtg1/3p which controls RTG-target gene transcription.
    Keywords:  ACO1; CIT2; IDH1; Mitochondrial retrograde pathway; RTG genes; Yeast
    DOI:  https://doi.org/10.1007/978-1-0716-1266-8_6
  26. Methods Mol Biol. 2021 ;2276 325-332
      Mitochondrial fusion depends on proteolytic processing of the dynamin-related GTPase protein, OPA1, which is regulated by the mitochondrial zinc metalloproteinase, OMA1. Last year we published a report describing a novel approach to directly measure the enzymatic activity of OMA1 in whole cell lysates. This fluorescence-based reporter assay utilizes an eight amino acid peptide sequence referred to as the S1 cleavage site where OMA1 cleaves within OPA1 and is flanked by a fluorophore and quencher. In this chapter, we provide additional insight into the OMA1 activity assay.
    Keywords:  Fluorescence-based reporter assay; Fusion; Mitochondria; OMA1; Protease
    DOI:  https://doi.org/10.1007/978-1-0716-1266-8_24
  27. Proc Natl Acad Sci U S A. 2021 Jun 08. pii: e2026595118. [Epub ahead of print]118(23):
      Class-II fumarases (fumarate hydratase, FH) are dual-targeted enzymes occurring in the mitochondria and cytosol of all eukaryotes. They are essential components in the DNA damage response (DDR) and, more specifically, protect cells from DNA double-strand breaks. Similarly, the gram-positive bacterium Bacillus subtilis class-II fumarase, in addition to its role in the tricarboxylic acid cycle, participates in the DDR. Escherichia coli harbors three fumarase genes: class-I fumA and fumB and class-II fumC Notably, class-I fumarases show no sequence similarity to class-II fumarases and are of different evolutionary origin. Strikingly, here we show that E. coli fumarase functions are distributed between class-I fumarases, which participate in the DDR, and the class-II fumarase, which participates in respiration. In E. coli, we discover that the signaling molecule, alpha-ketoglutarate (α-KG), has a function, complementing DNA damage sensitivity of fum-null mutants. Excitingly, we identify the E. coli α-KG-dependent DNA repair enzyme AlkB as the target of this interplay of metabolite signaling. In addition to α-KG, fumarate (fumaric acid) is shown to affect DNA damage repair on two different levels, first by directly inhibiting the DNA damage repair enzyme AlkB demethylase activity, both in vitro and in vivo (countering α-KG). The second is a more global effect on transcription, because fum-null mutants exhibit a decrease in transcription of key DNA damage repair genes. Together, these results show evolutionary adaptable metabolic signaling of the DDR, in which fumarases and different metabolites are recruited regardless of the evolutionary enzyme class performing the function.
    Keywords:  AlkB; DNA damage; fumarase; metabolite signaling; tricarboxylic acid cycle
    DOI:  https://doi.org/10.1073/pnas.2026595118
  28. Methods Mol Biol. 2021 ;2276 357-382
      Untargeted metabolomics has rapidly become a profiling method of choice in many areas of research, including mitochondrial biology. Most commonly, untargeted metabolomics is performed with liquid chromatography/mass spectrometry because it enables measurement of a relatively wide range of physiochemically diverse molecules. Specifically, to assess energy pathways that are associated with mitochondrial metabolism, hydrophilic interaction liquid chromatography (HILIC) is often applied before analysis with a high-resolution accurate mass instrument. The workflow produces large, complex data files that are impractical to analyze manually. Here, we present a protocol to perform untargeted metabolomics on biofluids such as plasma, urine, and cerebral spinal fluid with a HILIC separation and an Orbitrap mass spectrometer. Our protocol describes each step of the analysis in detail, from preparation of solvents for chromatography to selecting parameters during data processing.
    Keywords:  Accurate mass; Data-dependent acquisition; HILIC; High-resolution; Liquid chromatography; Mass spectrometry; Metabolites; Metabolomics; Profiling; Quality assurance; Quality control
    DOI:  https://doi.org/10.1007/978-1-0716-1266-8_27
  29. Mol Cell. 2021 May 25. pii: S1097-2765(21)00365-8. [Epub ahead of print]
      Metabolic reprogramming is a common feature of many human cancers, including acute myeloid leukemia (AML). However, the upstream regulators that promote AML metabolic reprogramming and the benefits conferred to leukemia cells by these metabolic changes remain largely unknown. We report that the transcription factor ATF3 coordinates serine and nucleotide metabolism to maintain cell cycling, survival, and the differentiation blockade in AML. Analysis of mouse and human AML models demonstrate that ATF3 directly activates the transcription of genes encoding key enzymatic regulators of serine synthesis, one-carbon metabolism, and de novo purine and pyrimidine synthesis. Total steady-state polar metabolite and heavy isotope tracing analyses show that ATF3 inhibition reduces de novo serine synthesis, impedes the incorporation of serine-derived carbons into newly synthesized purines, and disrupts pyrimidine metabolism. Importantly, exogenous nucleotide supplementation mitigates the anti-leukemia effects of ATF3 inhibition. Together, these findings reveal the dependence of AML on ATF3-regulated serine and nucleotide metabolism.
    Keywords:  AML; ATF3; ATF4; cell cycle; differentiation; leukemia; metabolism; purines; pyrimidines; serine
    DOI:  https://doi.org/10.1016/j.molcel.2021.05.008
  30. Methods Mol Biol. 2021 ;2277 433-447
      In recent years, next-generation sequencing (NGS) has become a powerful tool for studying both inherited and somatic heteroplasmic mitochondrial DNA (mtDNA) variation. NGS has proved particularly powerful when combined with single-cell isolation techniques, allowing the investigation of low-level heteroplasmic variants both between cells and within tissues. Nevertheless, there remain significant challenges, especially around the selective enrichment of mtDNA from total cellular DNA and the avoidance of nuclear pseudogenes. This chapter summarizes the techniques needed to enrich, amplify, sequence, and analyse mtDNA using NGS .
    Keywords:  Massively parallel sequencing; Mitochondrial DNA; Mitochondrial isolation deep sequencing
    DOI:  https://doi.org/10.1007/978-1-0716-1270-5_27
  31. Int J Vitam Nutr Res. 2021 Jun 02. 1-10
       Carbon monoxide (CO) is endogenously produced upon degradation of heme by heme oxygenases (HOs) and is suggested to act as a gaseous signaling molecule. The expression of HO-1 is triggered by the Nrf2-Keap1 signaling pathway which responds to exogenous stress signals and dietary constituents such as flavonoids and glucosinolates or reactive metabolic intermediates like 4-hydroxynonenal. Endogenous CO affects energy metabolism, regulates the utilization of glucose and addresses CYP450 enzymes. Using the CO releasing molecule-401 (CORM-401), we studied the effect of endogenous CO on ATP synthesis, AMP-signaling and activation of the AMPK pathway in cell culture. Upon exposure of cells to CORM-401, the mitochondrial ATP production rate was significantly decreased (P=0.007) to about 50%, while glycolytic ATP synthesis was unchanged (P=0.489). Total ATP levels were less affected as determined by mass spectrometry. Instead, levels of ADP and AMP were elevated following CORM-401 exposure by about two- (P=0.022) and four-fold (P=0.012) compared to control, respectively. Increased concentrations of AMP activate AMPK which was demonstrated by a 10 to 15-fold increased phosphorylation of Thr172 of the α-subunit of AMPK (P=0.025). A downstream target of AMPK is the kinase ULK1 which triggers autophagic and mitophagic processes. Activation of ULK1 after CO exposure was proven by a 3 to 5-fold elevated phosphorylation of ULK1 at Ser555 (P=0.004). The present data suggest that production of endogenous CO leads to increasing amounts of AMP which mediates AMPK-dependent downstream effects and likely triggers autophagic processes. Since dietary constituents and their metabolites induce the expression of the CO producing enzyme HO-1, CO signaling may also be involved in the cellular response to nutritional factors.
    Keywords:  CORMs; mitochondria; mitophagy; nutrition; respiratory chain; signaling
    DOI:  https://doi.org/10.1024/0300-9831/a000714
  32. Methods Mol Biol. 2021 ;2276 67-85
      Respirometry analysis is an effective technique to assess mitochondrial physiology. Insects are valuable biochemical models to understand metabolism and human diseases. Insect flight muscle and brain have been extensively used to explore mitochondrial function due to dissection feasibility and the low sample effort to allow oxygen consumption measurements. However, adequate plasma membrane permeabilization is required for substrates/modulators to reach mitochondria. Here, we describe a new method for study of mitochondrial physiology in insect tissues based on mechanical permeabilization as a fast and reliable method that do not require the use of detergents for chemical permeabilization of plasma membrane, while preserves mitochondrial integrity.
    Keywords:  Animal models; Bioenergetics; Insect; Metabolism; Mitochondria; Respiration
    DOI:  https://doi.org/10.1007/978-1-0716-1266-8_5
  33. Int J Mol Sci. 2021 May 27. pii: 5703. [Epub ahead of print]22(11):
      In order to meet the high energy demand, a metabolic reprogramming occurs in cancer cells. Its role is crucial in promoting tumor survival. Among the substrates in demand, oxygen is fundamental for bioenergetics. Nevertheless, tumor microenvironment is frequently characterized by low-oxygen conditions. Hypoxia-inducible factor 1 (HIF-1) is a pivotal modulator of the metabolic reprogramming which takes place in hypoxic cancer cells. In the hub of cellular bioenergetics, mitochondria are key players in regulating cellular energy. Therefore, a close crosstalk between mitochondria and HIF-1 underlies the metabolic and functional changes of cancer cells. Noteworthy, HIF-1 represents a promising target for novel cancer therapeutics. In this review, we summarize the molecular mechanisms underlying the interplay between HIF-1 and energetic metabolism, with a focus on mitochondria, of hypoxic cancer cells.
    Keywords:  HIF-1; TCA cycle; cancer metabolism; hypoxia; mitochondria
    DOI:  https://doi.org/10.3390/ijms22115703
  34. Metabolites. 2021 May 26. pii: 344. [Epub ahead of print]11(6):
      Tumor cells are known to favor a glycolytic metabolism over oxidative phosphorylation (OxPhos), which takes place in mitochondria, to produce the energy and building blocks essential for cell maintenance and cell growth. This phenotypic property of tumor cells gives them several advantages over normal cells and is known as the Warburg effect. Tumors can be treated as a metabolic disease by targeting their bioenergetics capacity. Alpha-lipoic acid (ALA) and calcium hydroxycitrate (HCA) are two drugs known to target the Warburg effect in tumor cells and hence induce the mitochondria for ATP production. However, tumor cells, known to have an increased flux through glycolysis, are not able to handle the activation of their mitochondria by drugs or any other condition, leading to decoupling of gene regulation. In this study, these drug effects were studied by mimicking an inflammatory condition through the imposition of a hyperosmotic condition in Chinese hamster ovary (CHO) cells, which behave similarly to tumor cells. Indeed, CHO cells grown in high osmolarity conditions, using 200 mM mannitol, showed a pronounced Warburg effect phenotype. Our results show that hyperosmolar conditions triggered high-throughput glycolysis and enhanced glutaminolysis in CHO cells, such as during cancer cell proliferation in inflammatory tissue. Finally, we found that the hyperosmolar condition was correlated with increased mitochondrial membrane potential (ΔΨm) but mitochondrial horsepower seemed to vanish (h = Δp/ΔΨm), which may be explained by mitochondrial hyperfusion.
    Keywords:  CHO cells; Warburg effect; hydroxycitrate; hyperosmolarity; lipoic acid; mitochondrial hyperfusion
    DOI:  https://doi.org/10.3390/metabo11060344
  35. Anal Chem. 2021 Jun 01.
      13C-isotope tracing is a frequently employed approach to study metabolic pathway activity. When combined with the subsequent quantification of absolute metabolite concentrations, this enables detailed characterization of the metabolome in biological specimens and facilitates computational time-resolved flux quantification. Classically, a 13C-isotopically labeled sample is required to quantify 13C-isotope enrichments and a second unlabeled sample for the quantification of metabolite concentrations. The rationale for a second unlabeled sample is that the current methods for metabolite quantification rely mostly on isotope dilution mass spectrometry (IDMS) and thus isotopically labeled internal standards are added to the unlabeled sample. This excludes the absolute quantification of metabolite concentrations in 13C-isotopically labeled samples. To address this issue, we have developed and validated a new strategy using an unlabeled internal standard to simultaneously quantify metabolite concentrations and 13C-isotope enrichments in a single 13C-labeled sample based on gas chromatography-mass spectrometry (GC/MS). The method was optimized for amino acids and citric acid cycle intermediates and was shown to have high analytical precision and accuracy. Metabolite concentrations could be quantified in small tissue samples (≥20 mg). Also, we applied the method on 13C-isotopically labeled mammalian cells treated with and without a metabolic inhibitor. We proved that we can quantify absolute metabolite concentrations and 13C-isotope enrichments in a single 13C-isotopically labeled sample.
    DOI:  https://doi.org/10.1021/acs.analchem.1c01040
  36. Mol Cancer Res. 2021 Jun 04. pii: molcanres.0962.2020. [Epub ahead of print]
      Epithelial-to-mesenchymal transition (EMT) is a fundamental developmental process with strong implications in cancer progression. Understanding the metabolic alterations associated with EMT may open new avenues of treatment and prevention. Here, we used 13C carbon analogs of glucose and glutamine to examine differences in their utilization within central carbon and lipid metabolism following EMT in breast epithelial cell lines. We found that there are inherent differences in metabolic profiles before and after EMT. We observed EMT-dependent re-routing of the TCA-cycle, characterized by increased mitochondrial IDH2 -mediated reductive carboxylation of glutamine to lipid biosynthesis with a concomitant lowering of glycolytic rates and glutamine-dependent glutathione (GSH) generation. Using weighted correlation network analysis, we identified cancer drugs whose efficacy against the NCI-60 Human Tumor Cell Line panel is significantly associated with GSH abundance and confirmed these in vitro. We report that EMT-linked alterations in GSH synthesis modulate the sensitivity of breast epithelial cells to mTOR inhibitors. Implications: EMT in breast cells causes an increased demand for glutamine for fatty acid biosynthesis, altering its contribution to glutathione biosynthesis which sensitizes the cells to mTOR inhibitors.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-20-0962
  37. Sci Rep. 2021 Jun 02. 11(1): 11595
      Malignant tumor cells exhibit mitochondrial alterations and are also influenced by biobehavioral processes, but the intersection of biobehavioral factors and mitochondria in malignant tumors remains unexplored. Here we examined multiple biochemical and molecular markers of mitochondrial content and function in benign tissue and in high-grade epithelial ovarian carcinoma (EOC) in parallel with exploratory analyses of biobehavioral factors. First, analysis of a publicly-available database (n = 1435) showed that gene expression of specific mitochondrial proteins in EOC is associated with survival. Quantifying multiple biochemical and molecular markers of mitochondrial content and function in tissue from 51 patients with benign ovarian masses and 128 patients with high-grade EOC revealed that compared to benign tissue, EOCs exhibit 3.3-8.4-fold higher mitochondrial content and respiratory chain enzymatic activities (P < 0.001) but similar mitochondrial DNA (mtDNA) levels (- 3.1%), documenting abnormal mitochondrial phenotypes in EOC. Mitochondrial respiratory chain activity was also associated with interleukin-6 (IL-6) levels in ascites. In benign tissue, negative biobehavioral factors were inversely correlated with mitochondrial content and respiratory chain activities, whereas positive biobehavioral factors tended to be positively correlated with mitochondrial measures, although effect sizes were small to medium (r = - 0.43 to 0.47). In contrast, serous EOCs showed less pronounced biobehavioral-mitochondrial correlations. These results document abnormal mitochondrial functional phenotypes in EOC and warrant further research on the link between biobehavioral factors and mitochondria in cancer.
    DOI:  https://doi.org/10.1038/s41598-021-89934-6
  38. Methods Mol Biol. 2021 ;2276 193-202
      Brain is one of the most energy-demanding organs. Energy in the form of ATP is produced in brain cells predominantly in oxidative phosphorylation coupled to mitochondrial respiration. Any alteration of the mitochondrial metabolism or prolonged ischemic or anoxic conditions can lead to serious neurological conditions, including neurodegenerative disorders. Assessment of mitochondrial metabolism is important for understanding physiological and pathological processes in the brain. Bioenergetics in central nervous system is dependent on multiple parameters including neuron-glia interactions and considering this, in vivo or ex vivo, the measurements of mitochondrial metabolism should also be complimenting the experiments on isolated mitochondria or cell cultures. To assess the mitochondrial function, there are several key bioenergetic parameters which indicate mitochondrial health. One of the major characteristics of mitochondria is the mitochondrial membrane potential (ΔΨm) which is used as a proton motive force for ATP production and generated by activity of the electron transport chain. Major donor of electrons for the mitochondrial respiratory chain is NADH. Here we demonstrate how to measure mitochondrial NADH/NAD(P)H autofluorescence and ΔΨm in acute brain slices in a time-dependent manner and provide information for the identification of NADH redox index, mitochondrial NADH pool, and the rate of NADH production in the Krebs cycle. Additionally, non-mitochondrial NADH/NADPH autofluorescence can signify the level of activity of the pentose phosphate pathway.
    Keywords:  Acute brain slices; Mitochondria; Mitochondrial membrane potential; NADH
    DOI:  https://doi.org/10.1007/978-1-0716-1266-8_14
  39. Methods Mol Biol. 2021 ;2276 173-191
      Mitochondrial Ca2+ uptake regulates mitochondrial function and contributes to cell signaling. Accordingly, quantifying mitochondrial Ca2+ signals and elaborating the mechanisms that accomplish mitochondrial Ca2+ uptake are essential to gain our understanding of cell biology. Here, we describe the benefits and drawbacks of various established old and new techniques to assess dynamic changes of mitochondrial Ca2+ concentration ([Ca2+]mito) in a wide range of applications.
    Keywords:  Ca2+ Imaging; Calcium Green; FRET; Fura-2; Mitochondrial Ca2+ uptake; Mitochondrial membrane potential; Mitoplast; Oxidative phosphorylation; Patch-clamp recording; Rhod-2
    DOI:  https://doi.org/10.1007/978-1-0716-1266-8_13
  40. Nature. 2021 Jun 02.
      Compartmentalization is a defining characteristic of eukaryotic cells, and partitions distinct biochemical processes into discrete subcellular locations. Microscopy1 and biochemical fractionation coupled with mass spectrometry2-4 have defined the proteomes of a variety of different organelles, but many intracellular compartments have remained refractory to such approaches. Proximity-dependent biotinylation techniques such as BioID provide an alternative approach to define the composition of cellular compartments in living cells5-7. Here we present a BioID-based map of a human cell on the basis of 192 subcellular markers, and define the intracellular locations of 4,145 unique proteins in HEK293 cells. Our localization predictions exceed the specificity of previous approaches, and enabled the discovery of proteins at the interface between the mitochondrial outer membrane and the endoplasmic reticulum that are crucial for mitochondrial homeostasis. On the basis of this dataset, we created humancellmap.org as a community resource that provides online tools for localization analysis of user BioID data, and demonstrate how this resource can be used to understand BioID results better.
    DOI:  https://doi.org/10.1038/s41586-021-03592-2
  41. Proc Natl Acad Sci U S A. 2021 Jun 08. pii: e2024414118. [Epub ahead of print]118(23):
      Altered cellular metabolism in kidney proximal tubule (PT) cells plays a critical role in acute kidney injury (AKI). The transcription factor Krüppel-like factor 6 (KLF6) is rapidly and robustly induced early in the PT after AKI. We found that PT-specific Klf6 knockdown (Klf6 PTKD) is protective against AKI and kidney fibrosis in mice. Combined RNA and chromatin immunoprecipitation sequencing analysis demonstrated that expression of genes encoding branched-chain amino acid (BCAA) catabolic enzymes was preserved in Klf6 PTKD mice, with KLF6 occupying the promoter region of these genes. Conversely, inducible KLF6 overexpression suppressed expression of BCAA genes and exacerbated kidney injury and fibrosis in mice. In vitro, injured cells overexpressing KLF6 had similar decreases in BCAA catabolic gene expression and were less able to utilize BCAA. Furthermore, knockdown of BCKDHB, which encodes one subunit of the rate-limiting enzyme in BCAA catabolism, resulted in reduced ATP production, while treatment with BCAA catabolism enhancer BT2 increased metabolism. Analysis of kidney function, KLF6, and BCAA gene expression in human chronic kidney disease patients showed significant inverse correlations between KLF6 and both kidney function and BCAA expression. Thus, targeting KLF6-mediated suppression of BCAA catabolism may serve as a key therapeutic target in AKI and kidney fibrosis.
    Keywords:  acute kidney injury; branched-chain amino acids; kidney; proximal tubule; transcription factor
    DOI:  https://doi.org/10.1073/pnas.2024414118
  42. Trends Biochem Sci. 2021 Jun 01. pii: S0968-0004(21)00106-7. [Epub ahead of print]
      High copy number, damage prone, and lean on repair mechanisms are unique features of mitochondrial DNA (mtDNA) that are hard to reconcile with its essentiality for oxidative phosphorylation, the primary function ascribed to this maternally inherited component of our genome. We propose that mtDNA is also a genotoxic stress sentinel, as well as a direct second messenger of this type of cellular stress. Here, we discuss existing evidence for this sentinel/effector role through the ability of mtDNA to escape the confines of the mitochondrial matrix and activate nuclear DNA damage/repair responses via interferon-stimulated gene products and other downstream effectors. However, this arrangement may come at a cost, leading to cancer chemoresistance and contributing to inflammation, disease pathology, and aging.
    Keywords:  DNA repair; cGAS-STING; chemoresistance; interferon-stimulated gene (ISG); mtDNA; retrograde signaling
    DOI:  https://doi.org/10.1016/j.tibs.2021.05.004
  43. Nat Commun. 2021 06 02. 12(1): 3292
      Autophagy regulates primary cilia formation, but the underlying mechanism is not fully understood. In this study, we identify NIMA-related kinase 9 (NEK9) as a GABARAPs-interacting protein and find that NEK9 and its LC3-interacting region (LIR) are required for primary cilia formation. Mutation in the LIR of NEK9 in mice also impairs in vivo cilia formation in the kidneys. Mechanistically, NEK9 interacts with MYH9 (also known as myosin IIA), which has been implicated in inhibiting ciliogenesis through stabilization of the actin network. MYH9 accumulates in NEK9 LIR mutant cells and mice, and depletion of MYH9 restores ciliogenesis in NEK9 LIR mutant cells. These results suggest that NEK9 regulates ciliogenesis by acting as an autophagy adaptor for MYH9. Given that the LIR in NEK9 is conserved only in land vertebrates, the acquisition of the autophagic regulation of the NEK9-MYH9 axis in ciliogenesis may have possible adaptive implications for terrestrial life.
    DOI:  https://doi.org/10.1038/s41467-021-23599-7
  44. Antioxidants (Basel). 2021 May 25. pii: 840. [Epub ahead of print]10(6):
      Reflex increases in breathing in response to acute hypoxia are dependent on activation of the carotid body (CB)-A specialised peripheral chemoreceptor. Central to CB O2-sensing is their unique mitochondria but the link between mitochondrial inhibition and cellular stimulation is unresolved. The objective of this study was to evaluate if ex vivo intact CB nerve activity and in vivo whole body ventilatory responses to hypoxia were modified by alterations in succinate metabolism and mitochondrial ROS (mitoROS) generation in the rat. Application of diethyl succinate (DESucc) caused concentration-dependent increases in chemoafferent frequency measuring approximately 10-30% of that induced by severe hypoxia. Inhibition of mitochondrial succinate metabolism by dimethyl malonate (DMM) evoked basal excitation and attenuated the rise in chemoafferent activity in hypoxia. However, approximately 50% of the response to hypoxia was preserved. MitoTEMPO (MitoT) and 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SKQ1) (mitochondrial antioxidants) decreased chemoafferent activity in hypoxia by approximately 20-50%. In awake animals, MitoT and SKQ1 attenuated the rise in respiratory frequency during hypoxia, and SKQ1 also significantly blunted the overall hypoxic ventilatory response (HVR) by approximately 20%. Thus, whilst the data support a role for succinate and mitoROS in CB and whole body O2-sensing in the rat, they are not the sole mediators. Treatment of the CB with mitochondrial selective antioxidants may offer a new approach for treating CB-related cardiovascular-respiratory disorders.
    Keywords:  carotid body; hypoxia; hypoxic ventilatory response; mitochondrial reactive oxygen species; succinate; succinate dehydrogenase
    DOI:  https://doi.org/10.3390/antiox10060840
  45. Front Cell Dev Biol. 2021 ;9 669379
      Mitochondria are double membrane organelles in eukaryotic cells that provide energy by generating adenosine triphosphate (ATP) through oxidative phosphorylation. They are crucial to many aspects of cellular metabolism. Mitochondria contain their own DNA that encodes for essential proteins involved in the execution of normal mitochondrial functions. Compared with nuclear DNA, the mitochondrial DNA (mtDNA) is more prone to be affected by DNA damaging agents, and accumulated DNA damages may cause mitochondrial dysfunction and drive the pathogenesis of a variety of human diseases, including neurodegenerative disorders and cancer. Therefore, understanding better how mtDNA damages are repaired will facilitate developing therapeutic strategies. In this review, we focus on our current understanding of the mtDNA repair system. We also discuss other mitochondrial events promoted by excessive DNA damages and inefficient DNA repair, such as mitochondrial fusion, fission, and mitophagy, which serve as quality control events for clearing damaged mtDNA.
    Keywords:  DNA repair; mitochondrial DNA; mitochondrial fission; mitochondrial fusion; mitophagy
    DOI:  https://doi.org/10.3389/fcell.2021.669379
  46. Metabolites. 2021 May 12. pii: 310. [Epub ahead of print]11(5):
      Stable-isotope tracing is a method to measure intracellular metabolic pathway utilization by feeding a cellular system a stable-isotope-labeled tracer nutrient. The power of the method to resolve differential pathway utilization is derived from the enrichment of metabolites in heavy isotopes that are synthesized from the tracer nutrient. However, the readout is complicated by the presence of naturally occurring heavy isotopes that are not derived from the tracer nutrient. Herein we present an algorithm, and a tool that applies it (PolyMID-Correct, part of the PolyMID software package), to computationally remove the influence of naturally occurring heavy isotopes. The algorithm is applicable to stable-isotope tracing data collected on low- and high- mass resolution mass spectrometers. PolyMID-Correct is open source and available under an MIT license.
    Keywords:  correction; mass isotopologue distribution; metabolic flux analysis; metabolism; natural abundances; stable-isotope tracing
    DOI:  https://doi.org/10.3390/metabo11050310
  47. Cell Rep. 2021 Jun 01. pii: S2211-1247(21)00552-0. [Epub ahead of print]35(9): 109203
      In multiple species, certain tissue types are prone to acquiring greater loads of mitochondrial genome (mtDNA) mutations relative to others, but the mechanisms that drive these heteroplasmy differences are unknown. We find that the conserved PTEN-induced putative kinase (PINK1/PINK-1) and the E3 ubiquitin-protein ligase parkin (PDR-1), which are required for mitochondrial autophagy (mitophagy), underlie stereotyped differences in heteroplasmy of a deleterious mitochondrial genome mutation (ΔmtDNA) between major somatic tissues types in Caenorhabditis elegans. We demonstrate that tissues prone to accumulating ΔmtDNA have lower mitophagy responses than those with low mutation levels. Moreover, we show that ΔmtDNA heteroplasmy increases when proteotoxic species that are associated with neurodegenerative disease and mitophagy inhibition are overexpressed in the nervous system. These results suggest that PINK1 and parkin drive organism-wide patterns of heteroplasmy and provide evidence of a causal link between proteotoxicity, mitophagy, and mtDNA mutation levels in neurons.
    Keywords:  Alzheimer's disease; PINK1; heteroplasmy; mitochondria; mitophagy; mtDNA; parkin; polyglutamate; proteotoxicity; tau
    DOI:  https://doi.org/10.1016/j.celrep.2021.109203
  48. Cell. 2021 May 26. pii: S0092-8674(21)00651-6. [Epub ahead of print]
      Cross-presentation of antigens from dead tumor cells by type 1 conventional dendritic cells (cDC1s) is thought to underlie priming of anti-cancer CD8+ T cells. cDC1 express high levels of DNGR-1 (a.k.a. CLEC9A), a receptor that binds to F-actin exposed by dead cell debris and promotes cross-presentation of associated antigens. Here, we show that secreted gelsolin (sGSN), an extracellular protein, decreases DNGR-1 binding to F-actin and cross-presentation of dead cell-associated antigens by cDC1s. Mice deficient in sGsn display increased DNGR-1-dependent resistance to transplantable tumors, especially ones expressing neoantigens associated with the actin cytoskeleton, and exhibit greater responsiveness to cancer immunotherapy. In human cancers, lower levels of intratumoral sGSN transcripts, as well as presence of mutations in proteins associated with the actin cytoskeleton, are associated with signatures of anti-cancer immunity and increased patient survival. Our results reveal a natural barrier to cross-presentation of cancer antigens that dampens anti-tumor CD8+ T cell responses.
    Keywords:  CLEC9A; DNGR-1; F-actin; cancer immunity; cross-presentation; dendritic cells; secreted gelsolin
    DOI:  https://doi.org/10.1016/j.cell.2021.05.021
  49. Cell Rep. 2021 Jun 01. pii: S2211-1247(21)00551-9. [Epub ahead of print]35(9): 109202
      Metabolic plasticity in cancer cells makes use of metabolism-targeting agents very challenging. Drug-induced metabolic rewiring may, however, uncover vulnerabilities that can be exploited. We report that resistance to glycolysis inhibitor 3-bromopyruvate (3-BrPA) arises from DNA methylation in treated cancer cells and subsequent silencing of the monocarboxylate transporter MCT1. We observe that, unexpectedly, 3-BrPA-resistant cancer cells mostly rely on glycolysis to sustain their growth, with MCT4 as an essential player to support lactate flux. This shift makes cancer cells particularly suited to adapt to hypoxic conditions and resist OXPHOS inhibitors and anti-proliferative chemotherapy. In contrast, blockade of MCT4 activity in 3-BrPA-exposed cancer cells with diclofenac or genetic knockout, inhibits growth of derived spheroids and tumors in mice. This study supports a potential mode of collateral lethality according to which metabolic adaptation of tumor cells to a first-line therapy makes them more responsive to a second-line treatment.
    Keywords:  3-bromopyruvate; diclofenac; drug repurposing; epigenetic; metabolic plasticity; methylation; monocarboxylate transporter; tumor metabolism
    DOI:  https://doi.org/10.1016/j.celrep.2021.109202
  50. Methods Mol Biol. 2021 ;2323 121-140
      The development of fluorescent biosensors is motivated by the desire to monitor cellular metabolite levels in real time. Most genetically encodable fluorescent biosensors are based on receptor proteins fused to fluorescent protein domains. More recently, small molecule-binding riboswitches have been adapted for use as fluorescent biosensors through fusion to the in vitro selected Spinach aptamer, which binds a profluorescent, cell-permeable small molecule mimic of the GFP chromophore, DFHBI. Here we describe methods to prepare and analyze riboswitch-Spinach tRNA fusions for ligand-dependent activation of fluorescence in vivo. Example procedures describe the use of the Vc2-Spinach tRNA biosensor to monitor perturbations in cellular levels of cyclic di-GMP using either fluorescence microscopy or flow cytometry. In this updated chapter, we have added procedures on using biosensors in flow cytometry to detect exogenously added compounds. The relative ease of cloning and imaging of these biosensors, as well as their modular nature, should make this method appealing to other researchers interested in utilizing riboswitch-based biosensors for metabolite sensing.
    Keywords:  Cyclic di-GMP; Cyclic dinucleotide; Flow cytometry; Fluorescence imaging; Fluorescence microscopy; RNA biosensor; Spinach aptamer; Vc2 riboswitch
    DOI:  https://doi.org/10.1007/978-1-0716-1499-0_10
  51. Nat Rev Gastroenterol Hepatol. 2021 Jun 04.
      Pancreatic cancer is a genetic disease, and the recurrent genetic alterations characteristic of pancreatic cancer indicate the cellular processes that are targeted for malignant transformation. In addition to somatic alterations in the most common driver genes (KRAS, CDKN2A, TP53 and SMAD4), large-scale studies have revealed major roles for genetic alterations of the SWI/SNF and COMPASS complexes, copy number alterations in GATA6 and MYC that partially define phenotypes of pancreatic cancer, and the role(s) of polyploidy and chromothripsis as factors contributing to pancreatic cancer biology and progression. Germline variants that increase the risk of pancreatic cancer continue to be discovered along with a greater appreciation of the features of pancreatic cancers with mismatch repair deficiencies and homologous recombination deficiencies that confer sensitivity to therapeutic targeting. Wild-type KRAS pancreatic cancers, some of which are driven by alternative oncogenic events affecting NRG1 or NTRK1 - for which targeted therapies exist - further underscore that pancreatic cancer is formally entering the era of precision medicine. Given the vast developments within this field, here we review the wide-ranging and most current information related to pancreatic cancer genomics with the goal of integrating this information into a unifying description of the life history of pancreatic cancer.
    DOI:  https://doi.org/10.1038/s41575-021-00463-z
  52. J Clin Invest. 2021 Jun 01. pii: 147276. [Epub ahead of print]131(11):
      In recent decades, cancer research has expanded exponentially beyond the study of abnormally dividing cells to include complex and extensive heterotypic interactions between cancer and noncancer cells that constitute the tumor microenvironment (TME). Modulation of stromal, immune, and endothelial cells by cancer cells promotes proliferation, survival, and metabolic changes that support tumor growth and metastasis. Recent evidence demonstrates that tumors can recruit peripheral nerves to the TME, leading to enhanced tumor growth in a range of cancer models through distinct mechanisms. This process, termed tumor innervation, is associated with an aggressive tumor phenotype and correlates with poor prognosis in clinical studies. Therefore, the peripheral nervous system may play an underrecognized role in cancer development, harboring targetable pathways that warrant investigation. To date, nerves have been implicated in driving proliferation, invasion, metastasis, and immune evasion through locally delivered neurotransmitters. However, emerging evidence suggests that cell-cell communication via exosomes induces tumor innervation, and thus exosomes may also mediate neural regulation of the TME. In this Review, seminal studies establishing tumor innervation are discussed, and known and putative signaling mechanisms between peripheral nerves and components of the TME are explored as a means to identify potential opportunities for therapeutic intervention.
    DOI:  https://doi.org/10.1172/JCI147276
  53. Methods Mol Biol. 2021 ;2276 143-151
      Deoxynucleoside 5'-triphosphates (dNTPs) are the molecular building blocks for DNA synthesis, and their balanced concentration in the cell is fundamental for health. dNTP imbalance can lead to genomic instability and other metabolic disturbances, resulting in devastating mitochondrial diseases.The accurate and efficient measurement of dNTPs from different biological samples and cellular compartments is vital to understand the mechanisms behind these diseases and develop and scrutinize their possible treatments. This chapter describes an update on the most recent development of the traditional radiolabeled polymerase extension method and its adaptation for the measurement of whole-cell and mitochondrial dNTP pools from cultured cells and tissue samples. The solid-phase reaction setting enables an increase in efficiency, accuracy, and measurement scale.
    Keywords:  Mitochondrial DNA depletion syndrome; Nucleotide pools; Solid-phase detection; dNTP; mtDNA
    DOI:  https://doi.org/10.1007/978-1-0716-1266-8_10
  54. Nature. 2021 Jun 02.
      The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.
    DOI:  https://doi.org/10.1038/s41586-021-03525-z
  55. Nature. 2021 Jun 02.
      Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1-3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model-the Red2Onco system-that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones.
    DOI:  https://doi.org/10.1038/s41586-021-03605-0
  56. Brain Commun. 2021 ;3(2): fcab063
    European ION Group
      Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 monoallelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and 11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mitochondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells.
    Keywords:  ACO2; Krebs cycle; aconitase 2; mitochondria; optic neuropathy
    DOI:  https://doi.org/10.1093/braincomms/fcab063
  57. Autophagy. 2021 Jun 04.
      Target of rapamycin complex 1 (TORC1) promotes cellular anabolism and suppresses macroautophagy/autophagy. In mammalian cells starved of amino acid, the GATOR1 complex, a negative regulator of TORC1, is released from its inhibitor GATOR2 and inactivates TORC1. We have recently identified the evolutionarily conserved GATOR2 components in fission yeast including Sea3, an ortholog of mammalian WDR59, but, unexpectedly, Sea3 acts as a part of GATOR1 to suppress TORC1. Moreover, fission yeast GATOR1 is not required for the amino-acid starvation-induced TORC1 attenuation, which is instead mediated by the Gcn2 pathway. Conversely, absence of a nitrogen source suppresses TORC1 in a manner dependent on GATOR1 as well as the Tsc1-Tsc2 complex, whose mammalian equivalent functions as a growth-factor sensitive TORC1 inhibitor. Thus, the evolutionarily conserved signaling modules are utilized differently between fission yeast and mammals to control TORC1 activity and autophagy.
    Keywords:  GATOR complex; Gcn2; Rag GTPase; TOR; TSC complex; autophagy
    DOI:  https://doi.org/10.1080/15548627.2021.1938915