bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2021–07–04
fifty papers selected by
Christian Frezza, , University of Cambridge, MRC Cancer Unit



  1. Metabolites. 2021 Jun 19. pii: 402. [Epub ahead of print]11(6):
      Amino acids play central roles in cancer progression beyond their function as building blocks for protein synthesis. Thus, targeting amino acid acquisition and utilization has been proved to be therapeutically beneficial in various pre-clinical models. In this regard, depletion of circulating asparagine, a nonessential amino acid, by L-asparaginase has been used in treating pediatric acute lymphoblastic leukemia (ALL) for decades. Of interest, unlike most solid tumor cells, ALL cells lack the ability to synthesize their own asparagine de novo effectively. However, only until recently, growing evidence suggests that solid tumor cells strive to acquire adequate amounts of asparagine to support tumor progression. This process is subjected to the regulation at various levels, including oncogenic signal, tumor-niche interaction, intratumor heterogeneity and dietary accessibility. We will review the literature on L-asparaginase-based therapy as well as recent understanding of asparagine metabolism in solid tumor progression, with the hope of shedding light into a broader cancer therapeutic strategy by perturbing its acquisition and utilization.
    Keywords:  ATF4; GCN2; L-asparaginase; acute lymphoblastic leukemia; asparagine; asparagine synthetase; mTORC1; metabolic adaptation; stress response
    DOI:  https://doi.org/10.3390/metabo11060402
  2. Cancers (Basel). 2021 Jun 28. pii: 3230. [Epub ahead of print]13(13):
      Metabolic reprogramming is a hallmark of cancer that enables cancer cells to grow, proliferate and survive. This metabolic rewiring is intrinsically regulated by mutations in oncogenes and tumor suppressors, but also extrinsically by tumor microenvironment factors (nutrient and oxygen availability, cell-to-cell interactions, cytokines, hormones, etc.). Intriguingly, only a few cancers are driven by mutations in metabolic genes, which lead metabolites with oncogenic properties (i.e., oncometabolites) to accumulate. In the last decade, there has been rekindled interest in understanding how dysregulated metabolism and its crosstalk with various cell types in the tumor microenvironment not only sustains biosynthesis and energy production for cancer cells, but also contributes to immune escape. An assessment of dysregulated intratumor metabolism has long since been exploited for cancer diagnosis, monitoring and therapy, as exemplified by 18F-2-deoxyglucose positron emission tomography imaging. However, the efficient delivery of precision medicine demands less invasive, cheaper and faster technologies to precisely predict and monitor therapy response. The metabolomic analysis of tumor and/or microenvironment-derived metabolites in readily accessible biological samples is likely to play an important role in this sense. Here, we review altered cancer metabolism and its crosstalk with the tumor microenvironment to focus on energy and biomass sources, oncometabolites and the production of immunosuppressive metabolites. We provide an overview of current pharmacological approaches targeting such dysregulated metabolic landscapes and noninvasive approaches to characterize cancer metabolism for diagnosis, therapy and efficacy assessment.
    Keywords:  LC-MS; MRI; MRS; biomarkers; cancer metabolism; cancer therapy; imaging; metabolic inhibitors; metabolomics; oncometabolites
    DOI:  https://doi.org/10.3390/cancers13133230
  3. Nat Metab. 2021 Jul 01.
      Altered metabolic activity contributes to the pathogenesis of a number of diseases, including diabetes, heart failure, cancer, fibrosis and neurodegeneration. These diseases, and organismal metabolism more generally, are only partially recapitulated by cell culture models. Accordingly, it is important to measure metabolism in vivo. Over the past century, researchers studying glucose homeostasis have developed strategies for the measurement of tissue-specific and whole-body metabolic activity (pathway fluxes). The power of these strategies has been augmented by recent advances in metabolomics technologies. Here, we review techniques for measuring metabolic fluxes in intact mammals and discuss how to analyse and interpret the results. In tandem, we describe important findings from these techniques, and suggest promising avenues for their future application. Given the broad importance of metabolism to health and disease, more widespread application of these methods holds the potential to accelerate biomedical progress.
    DOI:  https://doi.org/10.1038/s42255-021-00419-2
  4. Biology (Basel). 2021 Jun 29. pii: 600. [Epub ahead of print]10(7):
      Mitochondria are double membrane-enclosed organelles performing important cellular and metabolic functions such as ATP generation, heme biogenesis, apoptosis, ROS production and calcium buffering. The mitochondrial inner membrane (IM) is folded into cristae membranes (CMs) of variable shapes using molecular players including the 'mitochondrial contact site and cristae organizing system' (MICOS) complex, the dynamin-like GTPase OPA1, the F1FO ATP synthase and cardiolipin. Aberrant cristae structures are associated with different disorders such as diabetes, neurodegeneration, cancer and hepato-encephalopathy. In this review, we provide an updated view on cristae biogenesis by focusing on novel roles of the MICOS complex in cristae dynamics and shaping of cristae. For over seven decades, cristae were considered as static structures. It was recently shown that cristae constantly undergo rapid dynamic remodeling events. Several studies have re-oriented our perception on the dynamic internal ambience of mitochondrial compartments. In addition, we discuss the recent literature which sheds light on the still poorly understood aspect of cristae biogenesis, focusing on the role of MICOS and its subunits. Overall, we provide an integrated and updated view on the relation between the biogenesis of cristae and the novel aspect of cristae dynamics.
    Keywords:  MICOS; cristae; cristae biogenesis; cristae dynamics; mitochondria
    DOI:  https://doi.org/10.3390/biology10070600
  5. Int J Mol Sci. 2021 Jun 27. pii: 6913. [Epub ahead of print]22(13):
      Metabolism is the central engine of living organisms as it provides energy and building blocks for many essential components of each cell, which are required for specific functions in different tissues. Mitochondria are the main site for energy production in living organisms and they also provide intermediate metabolites required for the synthesis of other biologically relevant molecules. Such cellular processes are finely tuned at different levels, including allosteric regulation, posttranslational modifications, and transcription of genes encoding key proteins in metabolic pathways. Peroxisome proliferator activated receptor γ coactivator 1 (PGC1) proteins are transcriptional coactivators involved in the regulation of many cellular processes, mostly ascribable to metabolic pathways. Here, we will discuss some aspects of the cellular processes regulated by PGC1s, bringing up some examples of their role in mitochondrial and cellular metabolism, and how metabolic regulation in mitochondria by members of the PGC1 family affects the immune system. We will analyze how PGC1 proteins are regulated at the transcriptional and posttranslational level and will also examine other regulators of mitochondrial metabolism and the related cellular functions, considering approaches to identify novel mitochondrial regulators and their role in physiology and disease. Finally, we will analyze possible therapeutical perspectives currently under assessment that are applicable to different disease states.
    Keywords:  metabolic regulation; mitochondria; mitochondrial disorders
    DOI:  https://doi.org/10.3390/ijms22136913
  6. Front Cell Dev Biol. 2021 ;9 698679
      Ferroptosis is a type of iron-dependent regulated cell death caused by the disruption that occurs when oxidative stress and antioxidant defenses interact, and then driven by lipid peroxidation and subsequent plasma membrane ruptures. The regulation of ferroptosis involves many factors, including the crosstalk between subcellular organelles, such as mitochondria, endoplasmic reticulum (ER), lysosomes, lipid droplets, and peroxisomes. Here, we show that the ER protein STING1 (also known as STING or TMEM173) promotes ferroptosis in human pancreatic cancer cell lines by increasing MFN1/2-dependent mitochondrial fusion, but not mitophagy-mediated mitochondrial removal. The classic ferroptosis inducer erastin, but not sulfasalazine, induces the accumulation of STING1 in the mitochondria, where it binds to MFN1/2 to trigger mitochondrial fusion, leading to subsequent reactive oxygen species production and lipid peroxidation. Consequently, in vitro or xenograft mouse models show that the genetic depletion of STING1 or MFN1/2 (but not the mitophagy regulator PINK1 or PRKN) reduces the sensitivity of pancreatic cancer cells to ferroptosis. These findings not only establish a new mitochondrial fusion-dependent cell death mechanism, but also indicate a potential strategy for enhancing ferroptosis-based therapy.
    Keywords:  MFN1/2; STING1; dynamic; ferroptosis; mitochondria
    DOI:  https://doi.org/10.3389/fcell.2021.698679
  7. Cancers (Basel). 2021 Jun 10. pii: 2900. [Epub ahead of print]13(12):
      The study of low-molecular-weight metabolites that exist in cells and organisms is known as metabolomics and is often conducted using mass spectrometry laboratory platforms. Definition of oncometabolites in the context of the metabolic phenotype of cancer cells has been accomplished through metabolomics. Oncometabolites result from mutations in cancer cell genes or from hypoxia-driven enzyme promiscuity. As a result, normal metabolites accumulate in cancer cells to unusually high concentrations or, alternatively, unusual metabolites are produced. The typical oncometabolites fumarate, succinate, (2R)-hydroxyglutarate and (2S)-hydroxyglutarate inhibit 2-oxoglutarate-dependent dioxygenases, such as histone demethylases and HIF prolyl-4-hydroxylases, together with DNA cytosine demethylases. As a result of the cancer cell acquiring this new metabolic phenotype, major changes in gene transcription occur and the modification of the epigenetic landscape of the cell promotes proliferation and progression of cancers. Stabilization of HIF1α through inhibition of HIF prolyl-4-hydroxylases by oncometabolites such as fumarate and succinate leads to a pseudohypoxic state that promotes inflammation, angiogenesis and metastasis. Metabolomics has additionally been employed to define the metabolic phenotype of cancer cells and patient biofluids in the search for cancer biomarkers. These efforts have led to the uncovering of the putative oncometabolites sarcosine, glycine, lactate, kynurenine, methylglyoxal, hypotaurine and (2R,3S)-dihydroxybutanoate, for which further research is required.
    Keywords:  (2R)-hydroxyglutarate; (2S)-hydroxyglutarate; DNA demethylation; fumarate; histone demethylation; hypoxia; metabolomics; oncometabolite; succinate
    DOI:  https://doi.org/10.3390/cancers13122900
  8. Oxid Med Cell Longev. 2021 ;2021 5543452
      A healthy mitochondrial network produces a large amount of ATP and biosynthetic intermediates to provide sufficient energy for myocardium and maintain normal cell metabolism. Mitochondria form a dynamic and interconnected network involved in various cellular metabolic signaling pathways. As mitochondria are damaged, controlling mitochondrial quantity and quality is activated by changing their morphology and tube network structure, mitophagy, and biogenesis to replenish a healthy mitochondrial network to preserve cell function. There is no doubt that mitochondrial dysfunction has become a key factor in many diseases. Ischemia/reperfusion (IR) injury is a pathological manifestation of various heart diseases. Cardiac ischemia causes temporary tissue and organelle damage. Although reperfusion is essential to compensate for nutrient deficiency, blood flow restoration inconsequently further kills the previously ischemic cardiomyocytes. To date, dysfunctional mitochondria and disturbed mitochondrial quality control have been identified as critical IR injury mechanisms. Many researchers have detected abnormal mitochondrial morphology and mitophagy, as well as aberrant levels and activity of mitochondrial biogenesis factors in the IR injury model. Although mitochondrial damage is well-known in myocardial IR injury, the causal relationship between abnormal mitochondrial quality control and IR injury has not been established. This review briefly describes the molecular mechanisms of mitochondrial quality control, summarizes our current understanding of the complex role of mitochondrial quality control in IR injury, and finally speculates on the possibility of targeted control of mitochondria and the methods available to mitigate IR injury.
    DOI:  https://doi.org/10.1155/2021/5543452
  9. Antioxid Redox Signal. 2021 Jun 27.
       SIGNIFICANCE: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+-homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid-, fatty acid-stimulated). Mitochondrial Ca2+-influx was found to enhance GSIS, reflecting cytosolic Ca2+-oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+-release from the endoplasmic reticulum (ER). The ATPase inhibitory factor IF1 was reported to tune the glucose-sensitivity range for GSIS. Mitochondrial protein kinase-A was implicated in preventing the IF1-mediated inhibition of the ATP-synthase.
    CRITICAL ISSUES: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+-signaling and homeostasis are between the 1st and 2nd GSIS phase; and whether mitochondria can replace ER in the amplification of IGV exocytosis.
    FUTURE DIRECTIONS: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, branched-chain keto acids, and fatty acids, and the amplification of secretion by GLP-1 and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact/diabetic states.
    DOI:  https://doi.org/10.1089/ars.2021.0113
  10. J Enzyme Inhib Med Chem. 2021 Dec;36(1): 1282-1289
      The small-molecule inhibitor of phosphoglycerate dehydrogenase, NCT-503, reduces incorporation of glucose-derived carbons into serine in vitro. Here we describe an off-target effect of NCT-503 in neuroblastoma cell lines expressing divergent phosphoglycerate dehydrogenase (PHGDH) levels and single-cell clones with CRISPR-Cas9-directed PHGDH knockout or their respective wildtype controls. NCT-503 treatment strongly reduced synthesis of glucose-derived citrate in all cell models investigated compared to the inactive drug control and independent of PHGDH expression level. Incorporation of glucose-derived carbons entering the TCA cycle via pyruvate carboxylase was enhanced by NCT-503 treatment. The activity of citrate synthase was not altered by NCT-503 treatment. We also detected no change in the thermal stabilisation of citrate synthase in cellular thermal shift assays from NCT-503-treated cells. Thus, the direct cause of the observed off-target effect remains enigmatic. Our findings highlight off-target potential within a metabolic assessment of carbon usage in cells treated with the small-molecule inhibitor, NCT-503.
    Keywords:  Cancer cell metabolism; citrate synthase; de novo serine synthesis pathway; pulsed stable isotope-resolved metabolomics; thermal shift assay
    DOI:  https://doi.org/10.1080/14756366.2021.1935917
  11. Metabolites. 2021 Jun 02. pii: 355. [Epub ahead of print]11(6):
      The pancreatic beta-cell transduces the availability of nutrients into the secretion of insulin. While this process is extensively modified by hormones and neurotransmitters, it is the availability of nutrients, above all glucose, which sets the process of insulin synthesis and secretion in motion. The central role of the mitochondria in this process was identified decades ago, but how changes in mitochondrial activity are coupled to the exocytosis of insulin granules is still incompletely understood. The identification of ATP-sensitive K+-channels provided the link between the level of adenine nucleotides and the electrical activity of the beta cell, but the depolarization-induced Ca2+-influx into the beta cells, although necessary for stimulated secretion, is not sufficient to generate the secretion pattern as produced by glucose and other nutrient secretagogues. The metabolic amplification of insulin secretion is thus the sequence of events that enables the secretory response to a nutrient secretagogue to exceed the secretory response to a purely depolarizing stimulus and is thus of prime importance. Since the cataplerotic export of mitochondrial metabolites is involved in this signaling, an orienting overview on the topic of nutrient secretagogues beyond glucose is included. Their judicious use may help to define better the nature of the signals and their mechanism of action.
    Keywords:  cytosolic calcium concentration; glucose; insulin secretion; metabolic amplification; mitochondria; nutrient secretagogues
    DOI:  https://doi.org/10.3390/metabo11060355
  12. Sci Adv. 2021 Jul;pii: eabf8631. [Epub ahead of print]7(27):
      We report a role for the mitochondrial single-stranded DNA binding protein (mtSSB) in regulating mitochondrial DNA (mtDNA) replication initiation in mammalian mitochondria. Transcription from the light-strand promoter (LSP) is required both for gene expression and for generating the RNA primers needed for initiation of mtDNA synthesis. In the absence of mtSSB, transcription from LSP is strongly up-regulated, but no replication primers are formed. Using deep sequencing in a mouse knockout model and biochemical reconstitution experiments with pure proteins, we find that mtSSB is necessary to restrict transcription initiation to optimize RNA primer formation at both origins of mtDNA replication. Last, we show that human pathological versions of mtSSB causing severe mitochondrial disease cannot efficiently support primer formation and initiation of mtDNA replication.
    DOI:  https://doi.org/10.1126/sciadv.abf8631
  13. Elife. 2021 Jun 28. pii: e65150. [Epub ahead of print]10
      Chemotherapy resistance is a critical barrier in cancer treatment. Metabolic adaptations have been shown to fuel therapy resistance; however, little is known regarding the generality of these changes and whether specific therapies elicit unique metabolic alterations. Using a combination of metabolomics, transcriptomics, and functional genomics, we show that two anthracyclines, doxorubicin and epirubicin, elicit distinct primary metabolic vulnerabilities in human breast cancer cells. Doxorubicin-resistant cells rely on glutamine to drive oxidative phosphorylation and de novo glutathione synthesis, while epirubicin-resistant cells display markedly increased bioenergetic capacity and mitochondrial ATP production. The dependence on these distinct metabolic adaptations is revealed by the increased sensitivity of doxorubicin-resistant cells and tumor xenografts to buthionine sulfoximine (BSO), a drug that interferes with glutathione synthesis, compared with epirubicin-resistant counterparts that are more sensitive to the biguanide phenformin. Overall, our work reveals that metabolic adaptations can vary with therapeutics and that these metabolic dependencies can be exploited as a targeted approach to treat chemotherapy-resistant breast cancer.
    Keywords:  PGC-1; anthracyclines; bioenergetics; breast cancer; cancer biology; human; metabolomics; mouse; therapeutic resistance
    DOI:  https://doi.org/10.7554/eLife.65150
  14. Biochim Biophys Acta Mol Cell Res. 2021 Jun 29. pii: S0167-4889(21)00149-X. [Epub ahead of print] 119095
      BCL2 family proteins are important regulators of mitochondrial outer membrane permeabilization (MOMP). In recent years, BCL2 family proteins have also been linked to the regulation of mitochondrial bioenergetics and dynamics. Given their overexpression in breast cancer cells, we sought to explore whether two key members of this family, BCL2 and BCL(X)L impacted on mitochondrial fusion/fission processes. By employing a single cell imaging and RNA sequencing we found that overexpression of BCL2 or BCL(X)L increases mitochondrial dynamics and alters the expression profile of genes involved in this process. Collectively, our data show that overexpression of BCL2 proteins regulates mitochondrial dynamics in breast cancer tumor cells.
    Keywords:  BCL2 proteins; Breast Cancer; Mitochondria; Single cell imaging; fusion/fission
    DOI:  https://doi.org/10.1016/j.bbamcr.2021.119095
  15. Elife. 2021 Jun 30. pii: e65215. [Epub ahead of print]10
      The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca²⁺-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca2+-buffering requirements of the cell. Here, we explore the role of Miro1 in parvalbumin interneurons and how changes in mitochondrial trafficking could alter network activity in the mouse brain. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization while PV+ interneuron mediated inhibition remained intact. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30 - 80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.
    Keywords:  cell biology; mouse; neuroscience
    DOI:  https://doi.org/10.7554/eLife.65215
  16. Nat Commun. 2021 Jul 02. 12(1): 4100
      Tet3 is the main α-ketoglutarate (αKG)-dependent dioxygenase in neurons that converts 5-methyl-dC into 5-hydroxymethyl-dC and further on to 5-formyl- and 5-carboxy-dC. Neurons possess high levels of 5-hydroxymethyl-dC that further increase during neural activity to establish transcriptional plasticity required for learning and memory functions. How αKG, which is mainly generated in mitochondria as an intermediate of the tricarboxylic acid cycle, is made available in the nucleus has remained an unresolved question in the connection between metabolism and epigenetics. We show that in neurons the mitochondrial enzyme glutamate dehydrogenase, which converts glutamate into αKG in an NAD+-dependent manner, is redirected to the nucleus by the αKG-consumer protein Tet3, suggesting on-site production of αKG. Further, glutamate dehydrogenase has a stimulatory effect on Tet3 demethylation activity in neurons, and neuronal activation increases the levels of αKG. Overall, the glutamate dehydrogenase-Tet3 interaction might have a role in epigenetic changes during neural plasticity.
    DOI:  https://doi.org/10.1038/s41467-021-24353-9
  17. Cell Rep. 2021 Jun 29. pii: S2211-1247(21)00697-5. [Epub ahead of print]35(13): 109321
      The major cap-binding protein eukaryotic translation initiation factor 4E (eIF4E), an ancient protein required for translation of all eukaryotic genomes, is a surprising yet potent oncogenic driver. The genetic interactions that maintain the oncogenic activity of this key translation factor remain unknown. In this study, we carry out a genome-wide CRISPRi screen wherein we identify more than 600 genetic interactions that sustain eIF4E oncogenic activity. Our data show that eIF4E controls the translation of Tfeb, a key executer of the autophagy response. This autophagy survival response is triggered by mitochondrial proteotoxic stress, which allows cancer cell survival. Our screen also reveals a functional interaction between eIF4E and a single anti-apoptotic factor, Bcl-xL, in tumor growth. Furthermore, we show that eIF4E and the exon-junction complex (EJC), which is involved in many steps of RNA metabolism, interact to control the migratory properties of cancer cells. Overall, we uncover several cancer-specific vulnerabilities that provide further resolution of the cancer translatome.
    Keywords:  Bcl-xL; CRISPRi; EJC; Tfeb; UPR(mt)-like stress response; autophagy; cancer; eIF4E; mitochondria; translation control
    DOI:  https://doi.org/10.1016/j.celrep.2021.109321
  18. Biology (Basel). 2021 Jun 23. pii: 572. [Epub ahead of print]10(7):
      Mitochondria are highly dynamic organelles that interchange their contents mediated by fission and fusion. However, it has previously been shown that the mitochondria of cultured human epithelial cells exhibit a gradient in the relative abundance of several proteins, with the perinuclear mitochondria generally exhibiting a higher protein abundance than the peripheral mitochondria. The molecular mechanisms that are required for the establishment and the maintenance of such inner-cellular mitochondrial protein abundance gradients are unknown. We verified the existence of inner-cellular gradients in the abundance of clusters of the mitochondrial outer membrane protein Tom20 in the mitochondria of kidney epithelial cells from an African green monkey (Vero cells) using STED nanoscopy and confocal microscopy. We found that the Tom20 gradients are established immediately after cell division and require the presence of microtubules. Furthermore, the gradients are abrogated in hyperfused mitochondrial networks. Our results suggest that inner-cellular protein abundance gradients from the perinuclear to the peripheral mitochondria are established by the trafficking of individual mitochondria to their respective cellular destination.
    Keywords:  image analysis; inner-cellular heterogeneity; nanoscopy; protein distribution; super-resolution microscopy
    DOI:  https://doi.org/10.3390/biology10070572
  19. STAR Protoc. 2021 Sep 17. 2(3): 100608
      13C nuclear spin hyperpolarization can increase the sensitivity of detection in an MRI experiment by more than 10,000-fold. 13C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized 13C label exchange between injected [1-13C]pyruvate and the endogenous tumor lactate pool can be used clinically to assess tumor grade and response to treatment. We describe here an experimental protocol for using this technique in patient-derived and established cell line xenograft models of breast cancer in the mouse. For complete details on the use and execution of this protocol, please refer to Ros et al. (2020).
    Keywords:  Biophysics; Cancer; Metabolism; Model Organisms
    DOI:  https://doi.org/10.1016/j.xpro.2021.100608
  20. Redox Biol. 2021 Jun 17. pii: S2213-2317(21)00206-8. [Epub ahead of print]45 102047
      The contribution of the Ubiquitin-Proteasome System (UPS) to mitophagy has been largely attributed to the E3 ubiquitin ligase Parkin. Here we show that in response to the oxidative stress associated with hypoxia or the hypoxia mimic CoCl2, the damaged and fragmented mitochondria are removed by Parkin-independent mitophagy. Mitochondria isolated from hypoxia or CoCl2-treated cells exhibited extensive ubiquitination, predominantly Lysine 48-linked and involves the degradation of key mitochondrial proteins such as the mitofusins MFN1/2, or the import channel component TOM20. Reflecting the critical role of mitochondrial protein degradation, proteasome inhibition blocked CoCl2-induced mitophagy. The five conserved ubiquitin-binding autophagy receptors (p62, NDP52, Optineurin, NBR1, TAX1BP1) were dispensable for the ensuing mitophagy, suggesting that the mitophagy step itself was independent of ubiquitination. Instead, the expression of two ubiquitin-independent mitophagy receptor proteins BNIP3 and NIX was induced by hypoxia or CoCl2-treatment followed by their recruitment to the oxidation-damaged mitochondria. By employing BNIP3/NIX double knockout and DRP1-null cell lines, we confirmed that mitochondrial clearance relies on DRP1-dependent mitochondrial fragmentation and BNIP3/NIX-mediated mitophagy. General antioxidants such as N-Acetyl Cysteine (NAC) or the mitochondria-specific Mitoquinone prevented HIF-1α stabilization, ameliorated hypoxia-related mitochondrial oxidative stress, and suppressed mitophagy. We conclude that the UPS and receptor-mediated autophagy converge to eliminate oxidation-damaged mitochondria.
    Keywords:  HIF-1α; Hypoxia; Mitochondria; Mitophagy; Oxidative stress; Proteasome; Ubiquitin
    DOI:  https://doi.org/10.1016/j.redox.2021.102047
  21. Int J Mol Sci. 2021 Jun 27. pii: 6897. [Epub ahead of print]22(13):
      Mechanistic target of rapamycin complex 1 (mTORC1) is a master growth regulator by controlling protein synthesis and autophagy in response to environmental cues. Amino acids, especially leucine and arginine, are known to be important activators of mTORC1 and to promote lysosomal translocation of mTORC1, where mTORC1 is thought to make contact with its activator Rheb GTPase. Although amino acids are believed to exclusively regulate lysosomal translocation of mTORC1 by Rag GTPases, how amino acids increase mTORC1 activity besides regulation of mTORC1 subcellular localization remains largely unclear. Here we report that amino acids also converge on regulation of the TSC2-Rheb GTPase axis via Ca2+/calmodulin (CaM). We showed that the amino acid-mediated increase of intracellular Ca2+ is important for mTORC1 activation and thereby contributes to the promotion of nascent protein synthesis. We found that Ca2+/CaM interacted with TSC2 at its GTPase activating protein (GAP) domain and that a CaM inhibitor reduced binding of CaM with TSC2. The inhibitory effect of a CaM inhibitor on mTORC1 activity was prevented by loss of TSC2 or by an active mutant of Rheb GTPase, suggesting that a CaM inhibitor acts through the TSC2-Rheb axis to inhibit mTORC1 activity. Taken together, in response to amino acids, Ca2+/CaM-mediated regulation of the TSC2-Rheb axis contributes to proper mTORC1 activation, in addition to the well-known lysosomal translocation of mTORC1 by Rag GTPases.
    Keywords:  Rheb GTPase; TSC; amino acid; calcium; calmodulin; mTOR
    DOI:  https://doi.org/10.3390/ijms22136897
  22. Cancers (Basel). 2021 Jun 19. pii: 3067. [Epub ahead of print]13(12):
      Altered cell metabolism is a hallmark of cancer cell biology, and the adaptive metabolic strategies of cancer cells have been of recent interest to many groups. Metabolic reprogramming has been identified as a critical step in glial cell transformation, and the use of antimetabolites against glioblastoma has been investigated. One-carbon (1-C) metabolism and its associated biosynthetic pathways, particularly purine nucleotide synthesis, are critical for rapid proliferation and are altered in many cancers. Purine metabolism has also been identified as essential for glioma tumourigenesis. Additionally, alterations of 1-C-mediated purine synthesis have been identified as commonly present in brain tumour initiating cells (BTICs) and could serve as a phenotypic marker of cells responsible for tumour recurrence. Further research is required to elucidate mechanisms through which metabolic vulnerabilities may arise in BTICs and potential ways to therapeutically target these metabolic processes. This review aims to summarize the role of 1-C metabolism-associated vulnerabilities in glioblastoma tumourigenesis and progression and investigate the therapeutic potential of targeting this pathway in conjunction with other treatment strategies.
    Keywords:  de novo purine synthesis; glioblastoma; glioma; metabolic reprogramming; metabolic treatment; one-carbon metabolism
    DOI:  https://doi.org/10.3390/cancers13123067
  23. Biomolecules. 2021 Jun 14. pii: 880. [Epub ahead of print]11(6):
      Subcellular compartmentation is a fundamental property of eukaryotic cells. Communication and metabolic and regulatory interconnectivity between organelles require that solutes can be transported across their surrounding membranes. Indeed, in mammals, there are hundreds of genes encoding solute carriers (SLCs) which mediate the selective transport of molecules such as nucleotides, amino acids, and sugars across biological membranes. Research over many years has identified the localization and preferred substrates of a large variety of SLCs. Of particular interest has been the SLC25 family, which includes carriers embedded in the inner membrane of mitochondria to secure the supply of these organelles with major metabolic intermediates and coenzymes. The substrate specificity of many of these carriers has been established in the past. However, the route by which animal mitochondria are supplied with NAD+ had long remained obscure. Only just recently, the existence of a human mitochondrial NAD+ carrier was firmly established. With the realization that SLC25A51 (or MCART1) represents the major mitochondrial NAD+ carrier in mammals, a long-standing mystery in NAD+ biology has been resolved. Here, we summarize the functional importance and structural features of this carrier as well as the key observations leading to its discovery.
    Keywords:  NAD; NAD+ transporters; SLC25; SLC25A51; membrane transport; mitochondria; mitochondrial carrier; mitochondrial transporter; solute carrier family 25
    DOI:  https://doi.org/10.3390/biom11060880
  24. Nat Metab. 2021 Jun 28.
      Acetyl-CoA is a central node in carbon metabolism and plays critical roles in regulatory and biosynthetic processes. The acetyl-CoA synthetase Acs2, which catalyses acetyl-CoA production from acetate, is an integral subunit of the serine-responsive SAM-containing metabolic enzyme (SESAME) complex, but the precise function of Acs2 within the SESAME complex remains unclear. Here, using budding yeast, we show that Acs2 within the SESAME complex is required for the regulation of telomere silencing and cellular senescence. Mechanistically, the SESAME complex interacts with the histone acetyltransferase SAS protein complex to promote histone H4K16 acetylation (H4K16ac) enrichment and the occupancy of bromodomain-containing protein, Bdf1, at subtelomeric regions. This interaction maintains telomere silencing by antagonizing the spreading of Sir2 along the telomeres, which is enhanced by acetate. Consequently, dissociation of Sir2 from telomeres by acetate leads to compromised telomere silencing and accelerated chronological ageing. In human endothelial cells, ACSS2, the ortholog of yeast Acs2, also interacts with H4K16 acetyltransferase hMOF and are required for acetate to increase H4K16ac, reduce telomere silencing and induce cell senescence. Altogether, our results reveal a conserved mechanism to connect cell metabolism with telomere silencing and cellular senescence.
    DOI:  https://doi.org/10.1038/s42255-021-00412-9
  25. Front Neurol. 2021 ;12 681326
      In the year 2000, the discovery of OPA1 mutations as causative for dominant optic atrophy (DOA) was pivotal to rapidly expand the field of mitochondrial dynamics and describe the complex machinery governing this pathway, with a multitude of other genes and encoded proteins involved in neurodegenerative disorders of the optic nerve. OPA1 turned out to be a much more complex protein than initially envisaged, connecting multiple pathways beyond its strict role in mitochondrial fusion, such as sensing of OXPHOS needs and mitochondrial DNA maintenance. As a consequence, an increasing need to investigate OPA1 functions at multiple levels has imposed the development of multiple tools and models that are here reviewed. Translational mitochondrial medicine, with the ultimate objective of translating basic science necessary to understand pathogenic mechanisms into therapeutic strategies, requires disease modeling at multiple levels: from the simplest, like in yeast, to cell models, including the increasing use of reprogrammed stem cells (iPSCs) from patients, to animal models. In the present review, we thoroughly examine and provide the state of the art of all these approaches.
    Keywords:  OPA1; OPA1 mutations; cell models; dominant optic atrophy; iPSCs; mitochondria; mouse models; retinal ganglion cells
    DOI:  https://doi.org/10.3389/fneur.2021.681326
  26. Cell Death Dis. 2021 Jun 28. 12(7): 657
      Subcellular organelles communicate with each other to regulate function and coordinate responses to changing cellular conditions. The physical-functional coupling of the endoplasmic reticulum (ER) with mitochondria allows for the direct transfer of Ca2+ between organelles and is an important avenue for rapidly increasing mitochondrial metabolic activity. As such, increasing ER-mitochondrial coupling can boost the generation of ATP that is needed to restore homeostasis in the face of cellular stress. The mitochondrial unfolded protein response (mtUPR) is activated by the accumulation of unfolded proteins in mitochondria. Retrograde signaling from mitochondria to the nucleus promotes mtUPR transcriptional responses aimed at restoring protein homeostasis. It is currently unknown whether the changes in mitochondrial-ER coupling also play a role during mtUPR stress. We hypothesized that mitochondrial stress favors an expansion of functional contacts between mitochondria and ER, thereby increasing mitochondrial metabolism as part of a protective response. Hela cells were treated with doxycycline, an antibiotic that inhibits the translation of mitochondrial-encoded proteins to create protein disequilibrium. Treatment with doxycycline decreased the abundance of mitochondrial encoded proteins while increasing expression of CHOP, C/EBPβ, ClpP, and mtHsp60, markers of the mtUPR. There was no change in either mitophagic activity or cell viability. Furthermore, ER UPR was not activated, suggesting focused activation of the mtUPR. Within 2 h of doxycycline treatment, there was a significant increase in physical contacts between mitochondria and ER that was distributed throughout the cell, along with an increase in the kinetics of mitochondrial Ca2+ uptake. This was followed by the rise in the rate of oxygen consumption at 4 h, indicating a boost in mitochondrial metabolic activity. In conclusion, an early phase of the response to doxycycline-induced mitochondrial stress is an increase in mitochondrial-ER coupling that potentiates mitochondrial metabolic activity as a means to support subsequent steps in the mtUPR pathway and sustain cellular adaptation.
    DOI:  https://doi.org/10.1038/s41419-021-03945-9
  27. Nat Commun. 2021 Jun 29. 12(1): 4019
      The vast majority of human tumors with p53 mutations undergo loss of the remaining wildtype p53 allele (loss-of-heterozygosity, p53LOH). p53LOH has watershed significance in promoting tumor progression. However, driving forces for p53LOH are poorly understood. Here we identify the repressive WTp53-HSF1 axis as one driver of p53LOH. We find that the WTp53 allele in AOM/DSS chemically-induced colorectal tumors (CRC) of p53R248Q/+ mice retains partial activity and represses heat-shock factor 1 (HSF1), the master regulator of the proteotoxic stress response (HSR) that is ubiquitously activated in cancer. HSR is critical for stabilizing oncogenic proteins including mutp53. WTp53-retaining CRC tumors, tumor-derived organoids and human CRC cells all suppress the tumor-promoting HSF1 program. Mechanistically, retained WTp53 activates CDKN1A/p21, causing cell cycle inhibition and suppression of E2F target MLK3. MLK3 links cell cycle with the MAPK stress pathway to activate the HSR response. In p53R248Q/+ tumors WTp53 activation by constitutive stress represses MLK3, thereby weakening the MAPK-HSF1 response necessary for tumor survival. This creates selection pressure for p53LOH which eliminates the repressive WTp53-MAPK-HSF1 axis and unleashes tumor-promoting HSF1 functions, inducing mutp53 stabilization enabling invasion.
    DOI:  https://doi.org/10.1038/s41467-021-24064-1
  28. EMBO J. 2021 Jun 30. e107913
      The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation-prone polyQ protein derived from human huntingtin. Expression of Q97-GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97-GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97-GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post-translational import of mitochondrial precursor proteins into mitochondria competes with aggregation-prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate-limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.
    Keywords:  Mia40; huntingtin; mitochondria; protein aggregation; protein translocation
    DOI:  https://doi.org/10.15252/embj.2021107913
  29. Int J Mol Sci. 2021 Jun 30. pii: 7068. [Epub ahead of print]22(13):
      The metabolic requirements and functions of cancer and normal tissues are vastly different. Due to the rapid growth of cancer cells in the tumor microenvironment, distorted vasculature is commonly observed, which creates harsh environments that require rigorous and constantly evolving cellular adaption. A common hallmark of aggressive and therapeutically resistant tumors is hypoxia and hypoxia-induced stress markers. However, recent studies have identified alterations in a wide spectrum of metabolic pathways that dictate tumor behavior and response to therapy. Accordingly, it is becoming clear that metabolic processes are not uniform throughout the tumor microenvironment. Metabolic processes differ and are cell type specific where various factors promote metabolic heterogeneity within the tumor microenvironment. Furthermore, within the tumor, these metabolically distinct cell types can organize to form cellular neighborhoods that serve to establish a pro-tumor milieu in which distant and spatially distinct cellular neighborhoods can communicate via signaling metabolites from stroma, immune and tumor cells. In this review, we will discuss how biochemical interactions of various metabolic pathways influence cancer and immune microenvironments, as well as associated mechanisms that lead to good or poor clinical outcomes.
    Keywords:  biochemistry; cancer; immunometabolism
    DOI:  https://doi.org/10.3390/ijms22137068
  30. Int J Mol Sci. 2021 Jun 04. pii: 6085. [Epub ahead of print]22(11):
      Lysine succinylation is a post-translational modification which alters protein function in both physiological and pathological processes. Mindful that it requires succinyl-CoA, a metabolite formed within the mitochondrial matrix that cannot permeate the inner mitochondrial membrane, the question arises as to how there can be succinylation of proteins outside mitochondria. The present mini-review examines pathways participating in peroxisomal fatty acid oxidation that lead to succinyl-CoA production, potentially supporting succinylation of extramitochondrial proteins. Furthermore, the influence of the mitochondrial status on cytosolic NAD+ availability affecting the activity of cytosolic SIRT5 iso1 and iso4-in turn regulating cytosolic protein lysine succinylations-is presented. Finally, the discovery that glia in the adult human brain lack subunits of both alpha-ketoglutarate dehydrogenase complex and succinate-CoA ligase-thus being unable to produce succinyl-CoA in the matrix-and yet exhibit robust pancellular lysine succinylation, is highlighted.
    Keywords:  fatty acid oxidation; ketoglutarate dehydrogenase complex; lysine; peroxisomes; post-translational modification; succinyl-CoA
    DOI:  https://doi.org/10.3390/ijms22116085
  31. Membranes (Basel). 2021 Jun 23. pii: 465. [Epub ahead of print]11(7):
      Mitochondria are known as the powerhouse of eukaryotic cells. Energy production occurs in specific dynamic membrane invaginations in the inner mitochondrial membrane called cristae. Although the integrity of these structures is recognized as a key point for proper mitochondrial function, less is known about the mechanisms at the origin of their plasticity and organization, and how they can influence mitochondria function. Here, we review the studies which question the role of lipid membrane composition based mainly on minimal model systems.
    Keywords:  cardiolipin; cone-shaped lipid asymmetry; cristae; curvature-based sorting; mitochondria; nonbilayer structures
    DOI:  https://doi.org/10.3390/membranes11070465
  32. Proc Natl Acad Sci U S A. 2021 Jul 06. pii: e2025252118. [Epub ahead of print]118(27):
      Endosymbioses have shaped the evolutionary trajectory of life and remain ecologically important. Investigating oceanic photosymbioses can illuminate how algal endosymbionts are energetically exploited by their heterotrophic hosts and inform on putative initial steps of plastid acquisition in eukaryotes. By combining three-dimensional subcellular imaging with photophysiology, carbon flux imaging, and transcriptomics, we show that cell division of endosymbionts (Phaeocystis) is blocked within hosts (Acantharia) and that their cellular architecture and bioenergetic machinery are radically altered. Transcriptional evidence indicates that a nutrient-independent mechanism prevents symbiont cell division and decouples nuclear and plastid division. As endosymbiont plastids proliferate, the volume of the photosynthetic machinery volume increases 100-fold in correlation with the expansion of a reticular mitochondrial network in close proximity to plastids. Photosynthetic efficiency tends to increase with cell size, and photon propagation modeling indicates that the networked mitochondrial architecture enhances light capture. This is accompanied by 150-fold higher carbon uptake and up-regulation of genes involved in photosynthesis and carbon fixation, which, in conjunction with a ca.15-fold size increase of pyrenoids demonstrates enhanced primary production in symbiosis. Mass spectrometry imaging revealed major carbon allocation to plastids and transfer to the host cell. As in most photosymbioses, microalgae are contained within a host phagosome (symbiosome), but here, the phagosome invaginates into enlarged microalgal cells, perhaps to optimize metabolic exchange. This observation adds evidence that the algal metamorphosis is irreversible. Hosts, therefore, trigger and benefit from major bioenergetic remodeling of symbiotic microalgae with potential consequences for the oceanic carbon cycle. Unlike other photosymbioses, this interaction represents a so-called cytoklepty, which is a putative initial step toward plastid acquisition.
    Keywords:  3D electron microscopy; oceanic plankton; photosynthesis; single-cell transcriptomics; symbiosis
    DOI:  https://doi.org/10.1073/pnas.2025252118
  33. Elife. 2021 Jul 01. pii: e69099. [Epub ahead of print]10
      The voltage-gated potassium channel Kv1.3 plays an apparent dual physiological role by participating in activation and proliferation of leukocytes as well as promoting apoptosis in several types of tumor cells. Therefore, Kv1.3 is considered a potential pharmacological target for immunodeficiency and cancer. Different cellular locations of Kv1.3, at the plasma membrane or the mitochondria, could be responsible for such duality. While plasma membrane Kv1.3 facilitates proliferation, the mitochondrial channel modulates apoptotic signaling. Several molecular determinants of Kv1.3 drive the channel to the cell surface, but no information is available about its mitochondrial targeting. Caveolins, which are able to modulate cell survival, participate in the plasma membrane targeting of Kv1.3. The channel, via a caveolin-binding domain (CDB), associates with caveolin 1 (Cav1), which localizes Kv1.3 to lipid raft membrane microdomains. The aim of our study was to understand the role of such interactions not only for channel targeting but also for cell survival in mammalian cells. By using a caveolin association-deficient channel (Kv1.3 CDBless), we demonstrate here that while the Kv1.3-Cav1 interaction is responsible for the channel localization in the plasma membrane, a lack of such interaction accumulates Kv1.3 in the mitochondria. Kv1.3 CDBless severely affects mitochondrial physiology and cell survival, indicating that a functional link of Kv1.3 with Cav1 within the mitochondria modulates the pro-apoptotic effects of the channel. Therefore, the balance exerted by these two complementary mechanisms fine-tune the physiological role of Kv1.3 during cell survival or apoptosis. Our data highlight an unexpected role for the mitochondrial caveolin-Kv1.3 axis during cell survival and apoptosis.
    Keywords:  apoptosis; cancer biology; cell biology; human; ion channels; leukocytes; mouse; xenopus
    DOI:  https://doi.org/10.7554/eLife.69099
  34. Cancer Res. 2021 Jun 28. pii: canres.0518.2021. [Epub ahead of print]
      Tumor suppressors represent a critical line of defense against tumorigenesis. Their mechanisms of action and the pathways they are involved in provide important insights into cancer progression, vulnerabilities, and treatment options. While nuclear and cytosolic tumor suppressors have been extensively investigated, relatively little is known about tumor suppressors localized within the mitochondria. However, recent research has begun to uncover the roles of these important proteins in suppressing tumorigenesis. Here we review this newly developing field and summarize available information on mitochondrial tumor suppressors.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-0518
  35. Nat Commun. 2021 Jun 28. 12(1): 4006
      MYCN activation is a hallmark of advanced neuroblastoma (NB) and a known master regulator of metabolic reprogramming, favoring NB adaptation to its microenvironment. We found that the expression of the main regulators of the molecular clock loops is profoundly disrupted in MYCN-amplified NB patients, and this disruption independently predicts poor clinical outcome. MYCN induces the expression of clock repressors and downregulates the one of clock activators by directly binding to their promoters. Ultimately, MYCN attenuates the molecular clock by suppressing BMAL1 expression and oscillation, thereby promoting cell survival. Reestablishment of the activity of the clock activator RORα via its genetic overexpression and its stimulation through the agonist SR1078, restores BMAL1 expression and oscillation, effectively blocks MYCN-mediated tumor growth and de novo lipogenesis, and sensitizes NB tumors to conventional chemotherapy. In conclusion, reactivation of RORα could serve as a therapeutic strategy for MYCN-amplified NBs by blocking the dysregulation of molecular clock and cell metabolism mediated by MYCN.
    DOI:  https://doi.org/10.1038/s41467-021-24196-4
  36. Metabolites. 2021 Jun 17. pii: 394. [Epub ahead of print]11(6):
      Studies in humans and model systems have established an important role of short telomeres in predisposing to liver fibrosis through pathways that are incompletely understood. Recent studies have shown that telomere dysfunction impairs cellular metabolism, but whether and how these metabolic alterations contribute to liver fibrosis is not well understood. Here, we investigated whether short telomeres change the hepatic response to metabolic stress induced by fructose, a sugar that is highly implicated in non-alcoholic fatty liver disease. We find that telomere shortening in telomerase knockout mice (TKO) imparts a pronounced susceptibility to fructose as reflected in the activation of p53, increased apoptosis, and senescence, despite lower hepatic fat accumulation in TKO mice compared to wild type mice with long telomeres. The decreased fat accumulation in TKO is mediated by p53 and deletion of p53 normalizes hepatic fat content but also causes polyploidy, polynuclearization, dysplasia, cell death, and liver damage. Together, these studies suggest that liver tissue with short telomers are highly susceptible to fructose and respond with p53 activation and liver damage that is further exacerbated when p53 is lost resulting in dysplastic changes.
    Keywords:  fructose; liver fibrosis; p53; telomeres; triglyceride
    DOI:  https://doi.org/10.3390/metabo11060394
  37. Nat Metab. 2021 Jul 01.
      MYC is a transcription factor with broad biological functions, notably in the control of cell proliferation. Here, we show that intestinal MYC regulates systemic metabolism. We find that MYC expression is increased in ileum biopsies from individuals with obesity and positively correlates with body mass index. Intestine-specific reduction of MYC in mice improves high-fat-diet-induced obesity, insulin resistance, hepatic steatosis and steatohepatitis. Mechanistically, reduced expression of MYC in the intestine promotes glucagon-like peptide-1 (GLP-1) production and secretion. Moreover, we identify Cers4, encoding ceramide synthase 4, catalysing de novo ceramide synthesis, as a MYC target gene. Finally, we show that administration of the MYC inhibitor 10058-F4 has beneficial effects on high-fat-diet-induced metabolic disorders, and is accompanied by increased GLP-1 and reduced ceramide levels in serum. This study positions intestinal MYC as a putative drug target against metabolic diseases, including non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.
    DOI:  https://doi.org/10.1038/s42255-021-00421-8
  38. Trends Cancer. 2021 Jun 26. pii: S2405-8033(21)00133-3. [Epub ahead of print]
      Isocitrate dehydrogenase (IDH) mutations produce high levels of the 'oncometabolite' R-2-hydroxyglutarate (R-2-HG) and play a key role in the initiation and progression of glioma tumors in the brain. A recent study in Nature Cancer by Friedrich et al. describes how IDH-mutant-derived R-2-HG elicits an immunosuppressive phenotype in glioma-associated macrophages. As such, the authors uncovered a new vulnerability that can be exploited for therapy.
    Keywords:  R-2-hydroxyglutarate (R-2-HG); immunometabolism; immunosuppression; immunotherapy; isocitrate dehydrogenase (IDH)-mutant gliomas; tumor-associated macrophages
    DOI:  https://doi.org/10.1016/j.trecan.2021.06.003
  39. Curr Biol. 2021 Jun 23. pii: S0960-9822(21)00821-6. [Epub ahead of print]
      The mitochondrion is an ancient endosymbiotic organelle that performs many essential functions in eukaryotic cells.1-3 Mitochondrial impairment often results in physiological defects or diseases.2-8 Since most mitochondrial genes have been copied into the nuclear genome during evolution,9 the regulatory and interaction mechanisms between the mitochondrial and nuclear genomes are very complex. Multiple mechanisms, including antioxidant, DNA repair, mitophagy, and mitochondrial biogenesis pathways, have been shown to monitor the quality and quantity of mitochondria.10-12 Nonetheless, it remains unclear if these pathways can be further modified to enhance mitochondrial stability. Previously, experimental evolution has been used to adapt cells to novel growth conditions. By analyzing the resulting evolved populations, insights have been gained into the underlying molecular mechanisms.13 Here, we experimentally evolved yeast cells under conditions that selected for efficient respiration while continuously assaulting the mitochondrial genome (mtDNA) with ethidium bromide (EtBr). We found that the ability to maintain functional mtDNA was enhanced in most of the evolved lines when challenged with mtDNA-damaging reagents. We identified mutations of the mitochondrial NADH dehydrogenase NDE1 in most of the evolved lines, but other pathways are also involved. Finally, we show that cells displaying enhanced mtDNA retention also exhibit a prolonged replicative lifespan. Our work reveals potential evolutionary trajectories by which cells can maintain functional mitochondria in response to mtDNA stress, as well as the physiological implications of such adaptations.
    Keywords:  experimental evolution; mitochondrial DNA; mitochondrial quality control; replicative lifespan; yeast genomics
    DOI:  https://doi.org/10.1016/j.cub.2021.06.026
  40. Science. 2021 07 02. pii: eabe9383. [Epub ahead of print]373(6550):
      The mechanisms by which macrophages regulate energy storage remain poorly understood. We identify in a genetic screen a platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF)-family ortholog, Pvf3, that is produced by macrophages and is required for lipid storage in fat-body cells of Drosophila larvae. Genetic and pharmacological experiments indicate that the mouse Pvf3 ortholog PDGFcc, produced by adipose tissue-resident macrophages, controls lipid storage in adipocytes in a leptin receptor- and C-C chemokine receptor type 2-independent manner. PDGFcc production is regulated by diet and acts in a paracrine manner to control lipid storage in adipose tissues of newborn and adult mice. At the organismal level upon PDGFcc blockade, excess lipids are redirected toward thermogenesis in brown fat. These data identify a macrophage-dependent mechanism, conducive to the design of pharmacological interventions, that controls energy storage in metazoans.
    DOI:  https://doi.org/10.1126/science.abe9383
  41. Mol Cell. 2021 Jul 01. pii: S1097-2765(21)00402-0. [Epub ahead of print]81(13): 2808-2822.e10
      The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic DNA and induces interferon-stimulated genes (ISGs) to activate the innate immune system. Here, we report the unexpected discovery that cGAS also senses dysfunctional protein production. Purified ribosomes interact directly with cGAS and stimulate its DNA-dependent activity in vitro. Disruption of the ribosome-associated protein quality control (RQC) pathway, which detects and resolves ribosome collision during translation, results in cGAS-dependent ISG expression and causes re-localization of cGAS from the nucleus to the cytosol. Indeed, cGAS preferentially binds collided ribosomes in vitro, and orthogonal perturbations that result in elevated levels of collided ribosomes and RQC activation cause sub-cellular re-localization of cGAS and ribosome binding in vivo as well. Thus, translation stress potently increases DNA-dependent cGAS activation. These findings have implications for the inflammatory response to viral infection and tumorigenesis, both of which substantially reprogram cellular protein synthesis.
    Keywords:  ASCC3; IRF3; STING; ZNF598; cGAS; innate immunity; interferon signalling; mRNA translation; ribosome collision; ribosome-associated protein quality control
    DOI:  https://doi.org/10.1016/j.molcel.2021.05.018
  42. Cancer Discov. 2021 Jul 02.
      Colorectal cancer cells express hepcidin to accumulate iron, promoting nucleotide metabolism.
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2021-092
  43. Int J Surg Pathol. 2021 Jun 28. 10668969211026241
      Fumarate hydratase (FH)-deficient renal cell carcinoma (RCC) is a rare and clinically aggressive RCC subtype that is commonly associated with the hereditary leiomyomatosis and renal cell carcinoma syndrome. The diagnostic hallmark of FH-deficient RCC is a high-grade microscopic appearance with prominent inclusion-like eosinophilic nucleoli and perinucleolar halos. Herein we report a case of an FH-deficient RCC in a 30-year-old female that exhibited low-grade nuclei and abundant eosinophilic cytoplasm, reminiscent of the clinically more indolent succinate dehydrogenase-deficient RCC subtype and the newly described eintity, eosinophilic, solid and cystic RCC. This case illustrates that FH-deficient RCC can have a wide spectrum of microscopic appearances, including low-grade eosinophilic RCC. In addition, it highlights that a low threshold to perform the immunohistochemical stains for FH and S-(2-succino) cysteine is warranted in RCC cases with unusual and even low-grade eosinophilic morphology.
    Keywords:  FH; HLRCC; SDH; fumarate; immunohistochemistry; renal cell carcinoma; succinate
    DOI:  https://doi.org/10.1177/10668969211026241
  44. Antibodies (Basel). 2021 Jun 28. pii: 25. [Epub ahead of print]10(3):
      T cell therapies, including CAR T cells, have proven more effective in hematologic malignancies than solid tumors, where the local metabolic environment is distinctly immunosuppressive. In particular, the acidic and hypoxic features of the tumor microenvironment (TME) present a unique challenge for T cells. Local metabolism is an important consideration for activated T cells as they undergo bursts of migration, proliferation and differentiation in hostile soil. Tumor cells and activated T cells both produce lactic acid at high rates. The role of lactic acid in T cell biology is complex, as lactate is an often-neglected carbon source that can fuel TCA anaplerosis. Circulating lactate is also an important means to regulate redox balance. In hypoxic tumors, lactate is immune-suppressive. Here, we discuss how intrinsic- (T cells) as well as extrinsic (tumor cells and micro-environmental)-derived metabolic factors, including lactate, suppress the ability of antigen-specific T cells to eradicate tumors. Finally, we introduce recent discoveries that target the TME in order to potentiate T cell-based therapies against cancer.
    Keywords:  CAR T-cells; LDHA; TME; VISTA; acidic; acidosis; lactate; lactic acid
    DOI:  https://doi.org/10.3390/antib10030025
  45. Front Immunol. 2021 ;12 688910
      Lactate is an end product of glycolysis. As a critical energy source for mitochondrial respiration, lactate also acts as a precursor of gluconeogenesis and a signaling molecule. We briefly summarize emerging concepts regarding lactate metabolism, such as the lactate shuttle, lactate homeostasis, and lactate-microenvironment interaction. Accumulating evidence indicates that lactate-mediated reprogramming of immune cells and enhancement of cellular plasticity contribute to establishing disease-specific immunity status. However, the mechanisms by which changes in lactate states influence the establishment of diverse functional adaptive states are largely uncharacterized. Posttranslational histone modifications create a code that functions as a key sensor of metabolism and are responsible for transducing metabolic changes into stable gene expression patterns. In this review, we describe the recent advances in a novel lactate-induced histone modification, histone lysine lactylation. These observations support the idea that epigenetic reprogramming-linked lactate input is related to disease state outputs, such as cancer progression and drug resistance.
    Keywords:  epigenetic; lactate; lactylation; macrophage; posttranslational modification
    DOI:  https://doi.org/10.3389/fimmu.2021.688910
  46. Commun Biol. 2021 Jun 29. 4(1): 820
      Host lipid metabolism and viral responses are intimately connected. However, the process by which the acquired immune systems adapts lipid metabolism to meet demands, and whether or not the metabolic rewiring confers a selective advantage to host immunity, remains unclear. Here we show that viral infection attenuates the expression of genes related to lipid metabolism in murine CD4+ T cells, which in turn increases the expression of antiviral genes. Inhibition of the fatty acid synthesis pathway substantially increases the basal expression of antiviral genes via the spontaneous production of type I interferon (IFN). Using a combination of CRISPR/Cas9-mediated genome editing technology and a global lipidomics analysis, we found that the decrease in monounsaturated fatty acid caused by genetic deletion of Scd2 in mice was crucial for the induction of an antiviral response through activation of the cGAS-STING pathway. These findings demonstrate the important relationship between fatty acid biosynthesis and type I IFN responses that enhances the antiviral response.
    DOI:  https://doi.org/10.1038/s42003-021-02310-y
  47. Cell Rep. 2021 Jun 29. pii: S2211-1247(21)00678-1. [Epub ahead of print]35(13): 109302
      Medulloblastoma (MB) is a malignant pediatric brain tumor arising in the cerebellum. Although abnormal GABAergic receptor activation has been described in MB, studies have not yet elucidated the contribution of receptor-independent GABA metabolism to MB pathogenesis. We find primary MB tumors globally display decreased expression of GABA transaminase (ABAT), the protein responsible for GABA metabolism, compared with normal cerebellum. However, less aggressive WNT and SHH subtypes express higher ABAT levels compared with metastatic G3 and G4 tumors. We show that elevated ABAT expression results in increased GABA catabolism, decreased tumor cell proliferation, and induction of metabolic and histone characteristics mirroring GABAergic neurons. Our studies suggest ABAT expression fluctuates depending on metabolite changes in the tumor microenvironment, with nutrient-poor conditions upregulating ABAT expression. We find metastatic MB cells require ABAT to maintain viability in the metabolite-scarce cerebrospinal fluid by using GABA as an energy source substitute, thereby facilitating leptomeningeal metastasis formation.
    Keywords:  ABAT; GABA shunt; cerebrospinal fluid; leptomeningeal disease; medulloblastoma; oxidative phosphorylation; tumor dormancy; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.celrep.2021.109302
  48. iScience. 2021 Jul 23. 24(7): 102697
      Redox couples coordinate cellular function, but the consequences of their imbalances are unclear. This is somewhat associated with the limitations of their experimental quantification. Here we circumvent these difficulties by presenting an approach that characterizes fitness-based tolerance profiles to redox couple imbalances using an in silico representation of metabolism. Focusing on the NADH/NAD+ redox couple in yeast, we demonstrate that reductive disequilibria generate metabolic syndromes comparable to those observed in cancer cells. The tolerance of yeast mutants to redox disequilibrium can also explain 30% of the variability in their experimentally measured chronological lifespan. Moreover, by predicting the significance of some metabolites to help stand imbalances, we correctly identify nutrients underlying mechanisms of pathology, lifespan-protecting molecules, or caloric restriction mimetics. Tolerance to redox imbalances becomes, in this way, a sound framework to recognize properties of the aging phenotype while providing a consistent biological rationale to assess anti-aging interventions.
    Keywords:  In silico biology; Metabolic flux analysis; Microbial metabolism; Systems biology
    DOI:  https://doi.org/10.1016/j.isci.2021.102697
  49. Dev Cell. 2021 Jun 29. pii: S1534-5807(21)00486-X. [Epub ahead of print]
      Stem cells (SCs) play a key role in homeostasis and repair. While many studies have focused on SC self-renewal and differentiation, little is known regarding the molecular mechanism regulating SC elimination and compensation upon loss. Here, we report that Caspase-9 deletion in hair follicle SCs (HFSCs) attenuates the apoptotic cascade, resulting in significant temporal delays. Surprisingly, Casp9-deficient HFSCs accumulate high levels of cleaved caspase-3 and are improperly cleared due to an essential caspase-3/caspase-9 feedforward loop. These SCs are retained in an apoptotic-engaged state, serving as mitogenic signaling centers by continuously releasing Wnt3 and instructing proliferation. Investigating the underlying mechanism, we reveal a caspase-3/Dusp8/p38 module responsible for Wnt3 induction, which operates in both normal and Casp9-deleted HFSCs. Notably, Casp9-deleted mice display accelerated wound repair and de novo hair follicle regeneration. Taken together, we demonstrate that apoptotic cells represent a dynamic SC niche, from which emanating signals drive SC proliferation and tissue regeneration.
    Keywords:  Wnt3; apoptosis; caspase; hair follicle; regeneration; stem cells; wound repair
    DOI:  https://doi.org/10.1016/j.devcel.2021.06.008
  50. Annu Rev Cell Dev Biol. 2021 Jul 02.
      The cell nucleus is best known as the container of the genome. Its envelope provides a barrier for passive macromolecule diffusion, which enhances the control of gene expression. As its largest and stiffest organelle, the nucleus also defines the minimal space requirements of a cell. Internal or external pressures that deform a cell to its physical limits cause a corresponding nuclear deformation. Evidence is consolidating that the nucleus, in addition to its genetic functions, serves as a physical sensing device for critical cell body deformation. Nuclear mechanotransduction allows cells to adapt their acute behaviors, mechanical stability, paracrine signaling, and fate to their physical surroundings. This review summarizes the basic chemical and mechanical properties of nuclear components, and how these properties are thought to be utilized for mechanosensing. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    DOI:  https://doi.org/10.1146/annurev-cellbio-120319-030049