bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2022‒01‒09
thirty-six papers selected by
Christian Frezza,



  1. Cell Metab. 2022 Jan 04. pii: S1550-4131(21)00634-3. [Epub ahead of print]34(1): 7-9
      Diet can influence tumor aggressiveness. Recently in Nature, a study by Pascual et al. provided evidence that dietary palmitic acid induces an epigenetic memory by modulating particular histone methylation marks in cancer cells. This allows cancer cells to activate extracellular matrix secretion from Schwann cells of the tumor microenvironment, which ultimately potentiates metastasis initiation.
    DOI:  https://doi.org/10.1016/j.cmet.2021.12.015
  2. Front Pharmacol. 2021 ;12 734078
      T cell activation and differentiation is associated with metabolic reprogramming to cope with the increased bioenergetic demand and to provide metabolic intermediates for the biosynthesis of building blocks. Antigen receptor stimulation not only promotes the metabolic switch of lymphocytes but also triggers the uptake of calcium (Ca2+) from the cytosol into the mitochondrial matrix. Whether mitochondrial Ca2+ influx through the mitochondrial Ca2+ uniporter (MCU) controls T cell metabolism and effector function remained, however, enigmatic. Using mice with T cell-specific deletion of MCU, we here show that genetic inactivation of mitochondrial Ca2+ uptake increased cytosolic Ca2+ levels following antigen receptor stimulation and store-operated Ca2+ entry (SOCE). However, ablation of MCU and the elevation of cytosolic Ca2+ did not affect mitochondrial respiration, differentiation and effector function of inflammatory and regulatory T cell subsets in vitro and in animal models of T cell-mediated autoimmunity and viral infection. These data suggest that MCU-mediated mitochondrial Ca2+ uptake is largely dispensable for murine T cell function. Our study has also important technical implications. Previous studies relied mostly on pharmacological inhibition or transient knockdown of mitochondrial Ca2+ uptake, but our results using mice with genetic deletion of MCU did not recapitulate these findings. The discrepancy of our study to previous reports hint at compensatory mechanisms in MCU-deficient mice and/or off-target effects of current MCU inhibitors.
    Keywords:  calcium (Ca2+); immunometabolism; mitochondria; mitochondrial Ca2+ handling; mitochondrial calcium uniporter (MCU); oxidative phosphorylation; store-operated Ca2+ entry
    DOI:  https://doi.org/10.3389/fphar.2021.734078
  3. Mol Cell. 2022 Jan 06. pii: S1097-2765(21)01077-7. [Epub ahead of print]82(1): 60-74.e5
      Acetyl-CoA is a key intermediate situated at the intersection of many metabolic pathways. The reliance of histone acetylation on acetyl-CoA enables the coordination of gene expression with metabolic state. Abundant acetyl-CoA has been linked to the activation of genes involved in cell growth or tumorigenesis through histone acetylation. However, the role of histone acetylation in transcription under low levels of acetyl-CoA remains poorly understood. Here, we use a yeast starvation model to observe the dramatic alteration in the global occupancy of histone acetylation following carbon starvation; the location of histone acetylation marks shifts from growth-promoting genes to gluconeogenic and fat metabolism genes. This reallocation is mediated by both the histone deacetylase Rpd3p and the acetyltransferase Gcn5p, a component of the SAGA transcriptional coactivator. Our findings reveal an unexpected switch in the specificity of histone acetylation to promote pathways that generate acetyl-CoA for oxidation when acetyl-CoA is limiting.
    Keywords:  Gcn5p; Rpd3p; SAGA; acetyl-CoA; environmental stress response; fat metabolism; gluconeogenesis; glucose starvation; histone acetylation; transcription
    DOI:  https://doi.org/10.1016/j.molcel.2021.12.015
  4. Front Chem. 2021 ;9 807868
      Mass spectrometry imaging (MSI) serves as an emerging tool for spatial profiling of metabolic dysfunction in ischemic tissue. Prior to MSI data analysis, commonly used staining methods, e.g., triphenyltetrazole chloride (TTC) staining, need to be implemented on the adjacent tissue for delineating lesion area and evaluating infarction, resulting in extra consumption of the tissue sample as well as morphological mismatch. Here, we propose an in situ ratiometric MSI method for simultaneous demarcation of lesion border and spatial annotation of metabolic and enzymatic signatures in ischemic tissue on identical tissue sections. In this method, the ion abundance ratio of a reactant pair in the TCA cycle, e.g., fumarate to malate, is extracted pixel-by-pixel from an ambient MSI dataset of ischemic tissue and used as a surrogate indicator for metabolic activity of mitochondria to delineate lesion area as if the tissue has been chemically stained. This method is shown to be precise and robust in identifying lesions in brain tissues and tissue samples from different ischemic models including heart, liver, and kidney. Furthermore, the proposed method allows screening and predicting metabolic and enzymatic alterations which are related to mitochondrial dysfunction. Being capable of concurrent lesion identification, in situ metabolomics analysis, and screening of enzymatic alterations, the ratiometric MSI method bears great potential to explore ischemic damages at both metabolic and enzymatic levels in biological research.
    Keywords:  TCA cycle; ischemia; mass spectrometry imaging; metabolic enzyme; ratiometric analysis
    DOI:  https://doi.org/10.3389/fchem.2021.807868
  5. Cell Metab. 2022 Jan 04. pii: S1550-4131(21)00620-3. [Epub ahead of print]34(1): 90-105.e7
      HER2+ breast cancer patients are presented with either synchronous (S-BM), latent (Lat), or metachronous (M-BM) brain metastases. However, the basis for disparate metastatic fitness among disseminated tumor cells of similar oncotype within a distal organ remains unknown. Here, employing brain metastatic models, we show that metabolic diversity and plasticity within brain-tropic cells determine metastatic fitness. Lactate secreted by aggressive metastatic cells or lactate supplementation to mice bearing Lat cells limits innate immunosurveillance and triggers overt metastasis. Attenuating lactate metabolism in S-BM impedes metastasis, while M-BM adapt and survive as residual disease. In contrast to S-BM, Lat and M-BM survive in equilibrium with innate immunosurveillance, oxidize glutamine, and maintain cellular redox homeostasis through the anionic amino acid transporter xCT. Moreover, xCT expression is significantly higher in matched M-BM brain metastatic samples compared to primary tumors from HER2+ breast cancer patients. Inhibiting xCT function attenuates residual disease and recurrence in these preclinical models.
    Keywords:  HER2; breast cancer brain metastasis; immune surveillance; late recurrences; metabolism; metastasis; metastatic dormancy; metastatic latency; redox homeostasis; relapse
    DOI:  https://doi.org/10.1016/j.cmet.2021.12.001
  6. Cell Rep. 2022 Jan 04. pii: S2211-1247(21)01701-0. [Epub ahead of print]38(1): 110197
      AMP-activated protein kinase (AMPK) regulates the balance between cellular anabolism and catabolism dependent on energy resources to maintain proliferation and survival. Small-compound AMPK activators show anti-cancer activity in preclinical models. Using the direct AMPK activator GSK621, we show that the unfolded protein response (UPR) is activated by AMPK in acute myeloid leukemia (AML) cells. Mechanistically, the UPR effector protein kinase RNA-like ER kinase (PERK) represses oxidative phosphorylation, tricarboxylic acid (TCA) cycle, and pyrimidine biosynthesis and primes the mitochondrial membrane to apoptotic signals in an AMPK-dependent manner. Accordingly, in vitro and in vivo studies reveal synergy between the direct AMPK activator GSK621 and the Bcl-2 inhibitor venetoclax. Thus, selective AMPK-activating compounds kill AML cells by rewiring mitochondrial metabolism that primes mitochondria to apoptosis by BH3 mimetics, holding therapeutic promise in AML.
    Keywords:  AML; AMPK; GSK621; PERK; mitochondrial apoptosis; unfolded protein response; venetoclax
    DOI:  https://doi.org/10.1016/j.celrep.2021.110197
  7. Cell Metab. 2022 Jan 04. pii: S1550-4131(21)00627-6. [Epub ahead of print]34(1): 5-7
      Senotherapy, the elimination of senescent cells, is a cutting-edge treatment for aging-related and lifestyle diseases. In this issue of Cell Metabolism, Wang et al. report that p21Cip1 highly expressing cells, which represent a senescent cell population, occur in the adipose tissue during obesity. Targeting them genetically or pharmacologically attenuates insulin resistance, suggesting a possible therapeutic approach to treat the metabolic complications of obesity.
    DOI:  https://doi.org/10.1016/j.cmet.2021.12.008
  8. Cell Metab. 2022 Jan 04. pii: S1550-4131(21)00626-4. [Epub ahead of print]34(1): 125-139.e8
      Concerted alteration of immune and metabolic homeostasis underlies several inflammation-related pathologies, ranging from metabolic syndrome to infectious diseases. Here, we explored the coordination of nucleic acid-dependent inflammatory responses and metabolic homeostasis. We reveal that the STING (stimulator of interferon genes) protein regulates metabolic homeostasis through inhibition of the fatty acid desaturase 2 (FADS2) rate-limiting enzyme in polyunsaturated fatty acid (PUFA) desaturation. STING ablation and agonist-mediated degradation increased FADS2-associated desaturase activity and led to accumulation of PUFA derivatives that drive thermogenesis. STING agonists directly activated FADS2-dependent desaturation, promoting metabolic alterations. PUFAs in turn inhibited STING, thereby regulating antiviral responses and contributing to resolving STING-associated inflammation. Thus, we have unveiled a negative regulatory feedback loop between STING and FADS2 that fine-tunes inflammatory responses. Our results highlight the role of metabolic alterations in human pathologies associated with aberrant STING activation and STING-targeting therapies.
    Keywords:  FADS2; STING; cGAS; cytosolic DNA; delta-6 Desaturase; inflammation; interferon responses; metabolism; nucleic acid immunity; polyunsaturated fatty acids
    DOI:  https://doi.org/10.1016/j.cmet.2021.12.007
  9. Mol Metab. 2021 Dec 31. pii: S2212-8778(21)00287-8. [Epub ahead of print] 101429
      STIM1 is a single-pass transmembrane endoplasmic/sarcoplasmic reticulum (E/SR) protein recognized for its role in store operated Ca2+ entry (SOCE), an ancient and ubiquitous signaling pathway. Whereas STIM1 is indispensable during development, its biological and metabolic functions in mature muscle were unclear. Shown here, STIM1 is abundant in adult skeletal muscle, upregulated by exercise, and present at SR-mitochondria interfaces. Among its multifaceted roles, STIM1 regulates Ca2+ signaling, mitochondrial Ca2+ loading, energy metabolism and protein homeostasis. Thus, inducible tissue-specific deletion of STIM1 (iSTIM1 KO) in adult muscle leads to diminished lean mass, reduced exercise capacity, and perturbed fuel selection in settings of energetic stress, without affecting whole-body glucose tolerance. Proteomics and phospho-proteomics analyses of iSTIM1 KO muscles revealed molecular signatures of low-grade E/SR stress and broad activation of processes and signaling networks involved in proteostasis. The findings provide insight into the pathophysiology of muscle diseases linked to disturbances in STIM1-dependent calcium handling.
    DOI:  https://doi.org/10.1016/j.molmet.2021.101429
  10. Mol Cell. 2022 Jan 06. pii: S1097-2765(21)01065-0. [Epub ahead of print]82(1): 8-9
      Hsieh et al. (2022) reveal that carbon starvation elicits an unexpected compensatory reallocation of histone acetylation to establish an adaptive gene expression program, demonstrating how chromatin may integrate cellular carbon flow via histone acetylation with gene regulation.
    DOI:  https://doi.org/10.1016/j.molcel.2021.12.003
  11. Trends Endocrinol Metab. 2022 Jan 04. pii: S1043-2760(21)00284-8. [Epub ahead of print]
      Microglia, the resident macrophages of the central nervous system (CNS), play important functions in the healthy and diseased brain. In the emerging field of immunometabolism, progress has been made in understanding how cellular metabolism can orchestrate the key responses of tissue macrophages, such as phagocytosis and inflammation. However, very little is known about the metabolic control of microglia. Lactate, now recognized as a crucial metabolite and a central substrate in metabolic flexibility, is emerging not only as a novel bioenergetic fuel for microglial metabolism but also as a potential modulator of cellular function. Parallels with macrophages will help in understanding how microglial lactate metabolism is implicated in brain physiology and pathology, and how it could be targeted for therapeutic purposes.
    Keywords:  CNS disease; lactate; metabolism; microglia; synaptic function
    DOI:  https://doi.org/10.1016/j.tem.2021.12.001
  12. Oxid Med Cell Longev. 2021 ;2021 7658501
      Pterostilbene (Pt) is a potentially beneficial plant phenol. In contrast to many other natural compounds (including the more celebrated resveratrol), Pt concentrations producing significant effects in vitro can also be reached with relative ease in vivo. Here we focus on some of the mechanisms underlying its activity, those involved in the activation of transcription factor EB (TFEB). A set of processes leading to this outcome starts with the generation of ROS, attributed to the interaction of Pt with complex I of the mitochondrial respiratory chain, and spreads to involve Ca2+ mobilization from the ER/mitochondria pool, activation of CREB and AMPK, and inhibition of mTORC1. TFEB migration to the nucleus results in the upregulation of autophagy and lysosomal and mitochondrial biogenesis. Cells exposed to several μM levels of Pt experience a mitochondrial crisis, an indication for using low doses in therapeutic or nutraceutical applications. Pt afforded significant functional improvements in a zebrafish embryo model of ColVI-related myopathy, a pathology which also involves defective autophagy. Furthermore, long-term supplementation with Pt reduced body weight gain and increased transcription levels of Ppargc1a and Tfeb in a mouse model of diet-induced obesity. These in vivo findings strengthen the in vitro observations and highlight the therapeutic potential of this natural compound.
    DOI:  https://doi.org/10.1155/2021/7658501
  13. Dev Cell. 2021 Dec 27. pii: S1534-5807(21)00995-3. [Epub ahead of print]
      The transcriptional co-activator YAP1 oncogene is the downstream effector of the Hippo pathway, which regulates tissue homeostasis, organ size, regeneration, and tumorigenesis. Multiple cancers are dependent on sustained expression of YAP1 for cell proliferation, survival, and tumorigenesis, but the molecular basis of this oncogene dependency is not well understood. To identify genes that can functionally substitute for YAP1, we performed a genome-scale genetic rescue screen in YAP1-dependent colon cancer cells expressing an inducible YAP1-specific shRNA. We found that the transcription factor PRDM14 rescued cell proliferation and tumorigenesis upon YAP1 suppression in YAP1-dependent cells, xenografts, and colon cancer organoids. YAP1 and PRDM14 individually activated the transcription of calmodulin 2 (CALM2) and a glucose transporter SLC2A1 upon YAP1 suppression, and CALM2 or SLC2A1 expression was required for the rescue of YAP1 suppression. Together, these findings implicate PRDM14-mediated transcriptional upregulation of CALM2 and SLC2A1 as key components of oncogenic YAP1 signaling and dependency.
    Keywords:  Hippo pathway; KRAS; PRDM14; YAP1; colon cancer; oncogene addiction; resistance
    DOI:  https://doi.org/10.1016/j.devcel.2021.12.006
  14. Leukemia. 2022 Jan 08.
      Mitochondria can function as signaling organelles, and part of this output leads to epigenetic remodeling. The full extent of this far-reaching interplay remains undefined. Here, we show that MYC transcriptionally activates IDH2 and increases alpha-ketoglutarate (αKG) levels. This regulatory step induces the activity of αKG-dependent DNA hydroxylases and RNA demethylases, thus reducing global DNA and RNA methylation. MYC, in a IDH2-dependent manner, also promotes the nuclear accumulation of TET1-TET2-TET3, FTO and ALKBH5. Notably, this subcellular movement correlated with the ability of MYC, in an IDH2-dependent manner, and, unexpectedly, of αKG to directly induce O-GlcNAcylation. Concordantly, modulation of the activity of OGT and OGA, enzymes that control the cycling of this non-canonical mono-glycosylation, largely recapitulated the effects of the MYC-IDH2-αKG axis on the subcellular movement of DNA and RNA demethylases. Together, we uncovered a hitherto unsuspected crosstalk between MYC, αKG and O-GlcNAcylation which could influence the epigenome and epitranscriptome homeostasis.
    DOI:  https://doi.org/10.1038/s41375-021-01489-7
  15. EMBO Rep. 2022 Jan 07. e48754
      Mitochondria are unavoidably subject to organellar stress resulting from exposure to a range of reactive molecular species. Consequently, cells operate a poorly understood quality control programme of mitophagy to facilitate elimination of dysfunctional mitochondria. Here, we used a model stressor, deferiprone (DFP), to investigate the molecular basis for stress-induced mitophagy. We show that mitochondrial fission 1 protein (Fis1) is required for DFP-induced mitophagy and that Fis1 is SUMOylated at K149, an amino acid residue critical for Fis1 mitochondrial localization. We find that DFP treatment leads to the stabilization of the SUMO protease SENP3, which is mediated by downregulation of the E3 ubiquitin (Ub) ligase CHIP. SENP3 is responsible for Fis1 deSUMOylation and depletion of SENP3 abolishes DFP-induced mitophagy. Furthermore, preventing Fis1 SUMOylation by conservative K149R mutation enhances Fis1 mitochondrial localization. Critically, expressing a Fis1 K149R mutant restores DFP-induced mitophagy in SENP3-depleted cells. Thus, we propose a model in which SENP3-mediated deSUMOylation facilitates Fis1 mitochondrial localization to underpin stress-induced mitophagy.
    Keywords:  Fis1; SENP3; SUMO; mitophagy; organellar stress
    DOI:  https://doi.org/10.15252/embr.201948754
  16. Int J Biol Sci. 2022 ;18(1): 301-314
      Accumulating evidence indicates a carcinogenic role of environmental arsenic exposure, but mechanisms on how arsenic fosters malignant transformation of the normal cells are not fully established. By applying untargeted global metabolomics approach, we now show that arsenic is highly capable of perturbing the intracellular metabolic programs of the human bronchial epithelial cells, some of which are prominent hallmarks of cancer cell metabolism. To understand the spatiotemporal patterns of arsenic regulation on multiple metabolic pathways, we treated the cells with environmentally relevant concentration of arsenic, 0.25 μM, consecutively for 6 weeks to 24 weeks, and found that arsenic prompted heme metabolism, glycolysis, sphingolipid metabolism, phospholipid catabolism, protein degradation, and cholesterol breakdown constitutively, but inhibited metabolism of uracil-containing pyrimidine, carnitine, serotonin, polyamines, and fatty acid β-oxidation. A strong inhibition of all metabolites in mitochondrial tricarboxylic acid (TCA) cycle was noted in the cells treated with As3+ for 6 to 13 weeks. However, the metabolites in the earlier, but not the later steps of TCA cycle, including citrate, aconitate and isocitrate, were induced at 16 weeks through 24 weeks of arsenic treatment. This comprehensive metabolomics analysis provides new insights into metabolic perturbation by arsenic and may lead to more precise indications of arsenic in molecular carcinogenesis.
    Keywords:  arsenic; cancer; cancer stem cells; metabolism; metabolomics
    DOI:  https://doi.org/10.7150/ijbs.67314
  17. Mol Omics. 2022 Jan 04.
      MELAS (mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes) is a progressive neurodegenerative disease caused by pathogenic mitochondrial DNA variants. The pathogenic mechanism of MELAS remains enigmatic due to the exceptional clinical heterogeneity and the obscure genotype-phenotype correlation among MELAS patients. To gain insights into the pathogenic signature of MELAS, we designed a comprehensive strategy integrating proteomics and metabolomics in patient-derived dermal fibroblasts harboring the ultra-rare MELAS pathogenic variant m.14453G>A, specifically affecting the mitochondrial respiratory complex I. Global proteomics was achieved by data-dependent acquisition (DDA) and verified by data-independent acquisition (DIA) using both Spectronaut and the recently launched MaxDIA platforms. Comprehensive metabolite coverage was achieved for both polar and nonpolar metabolites in both reverse phase and HILIC LC-MS/MS analyses. Our proof-of-principle MELAS study with multi-omics integration revealed OXPHOS dysregulation with a predominant deficiency of complex I subunits, as well as alterations in key bioenergetic pathways, glycolysis, tricarboxylic acid cycle, and fatty acid β-oxidation. The most clinically relevant discovery is the downregulation of the arginine biosynthesis pathway, likely due to blocked argininosuccinate synthase, which is congruent with the MELAS cardinal symptom of stroke-like episodes and its current treatment by arginine infusion. In conclusion, we demonstrated an integrated proteomic and metabolomic strategy for patient-derived fibroblasts, which has great clinical potential to discover therapeutic targets and design personalized interventions after validation with a larger patient cohort in the future.
    DOI:  https://doi.org/10.1039/d1mo00416f
  18. Cell Metab. 2022 Jan 04. pii: S1550-4131(21)00628-8. [Epub ahead of print]34(1): 106-124.e10
      Still's disease, the paradigm of autoinflammation-cum-autoimmunity, predisposes for a cytokine storm with excessive T lymphocyte activation upon viral infection. Loss of function of the purine nucleoside enzyme FAMIN is the sole known cause for monogenic Still's disease. Here we discovered that a FAMIN-enabled purine metabolon in dendritic cells (DCs) restrains CD4+ and CD8+ T cell priming. DCs with absent FAMIN activity prime for enhanced antigen-specific cytotoxicity, IFNγ secretion, and T cell expansion, resulting in excessive influenza A virus-specific responses. Enhanced priming is already manifest with hypomorphic FAMIN-I254V, for which ∼6% of mankind is homozygous. FAMIN controls membrane trafficking and restrains antigen presentation in an NADH/NAD+-dependent manner by balancing flux through adenine-guanine nucleotide interconversion cycles. FAMIN additionally converts hypoxanthine into inosine, which DCs release to dampen T cell activation. Compromised FAMIN consequently enhances immunosurveillance of syngeneic tumors. FAMIN is a biochemical checkpoint that protects against excessive antiviral T cell responses, autoimmunity, and autoinflammation.
    Keywords:  NADH/NAD(+) reductive stress; T cell priming; autoimmunity; dendritic cells; membrane trafficking; purine nucleotide cycle
    DOI:  https://doi.org/10.1016/j.cmet.2021.12.009
  19. Biol Open. 2022 Jan 07. pii: bio.058728. [Epub ahead of print]
      Fibroblasts are quiescent and tumor suppressive in nature but become activated in wound healing and cancer. The response of fibroblasts to cellular stress has not been extensively investigated however the p53 tumor suppressor has been shown to be activated in fibroblasts during nutrient deprivation. Since the p19 Alternative reading frame (p19Arf) tumor suppressor is a key regulator of p53 activation during oncogenic stress, we investigated the role of p19Arf in fibroblasts during nutrient deprivation. Here we show that prolonged leucine deprivation resulted in increased expression and nuclear localization of p19Arf, triggering apoptosis in primary murine adult lung fibroblasts (ALFs). In contrast, the absence of p19Arf during long-term leucine deprivation resulted in increased ALF proliferation, migration and survival through upregulation of the Integrated Stress Response pathway and increased autophagic flux. Our data implicates a new role for p19Arf in response to nutrient deprivation.
    Keywords:   p19Arf ; Autophagy; Fibroblast; Integrated Stress Response; Leucine Deprivation
    DOI:  https://doi.org/10.1242/bio.058728
  20. J Clin Invest. 2022 Jan 04. pii: e148546. [Epub ahead of print]132(1):
      Vaccination affords protection from disease by activating pathogen-specific immune cells and facilitating the development of persistent immunologic memory toward the vaccine-specific pathogen. Current vaccine regimens are often based on the efficiency of the acute immune response, and not necessarily on the generation of memory cells, in part because the mechanisms underlying the development of efficient immune memory remain incompletely understood. This Review describes recent advances in defining memory T cell metabolism and how metabolism of these cells might be altered in patients affected by mitochondrial diseases or metabolic syndrome, who show higher susceptibility to recurrent infections and higher rates of vaccine failure. It discusses how this new understanding could add to the way we think about immunologic memory, vaccine development, and cancer immunotherapy.
    DOI:  https://doi.org/10.1172/JCI148546
  21. Cell Metab. 2022 Jan 04. pii: S1550-4131(21)00533-7. [Epub ahead of print]34(1): 21-34
      Metabolite identification represents a major challenge, and opportunity, for biochemistry. The collective characterization and quantification of metabolites in living organisms, with its many successes, represents a major biochemical knowledgebase and the foundation of metabolism's rebirth in the 21st century; yet, characterizing newly observed metabolites has been an enduring obstacle. Crystallography and NMR spectroscopy have been of extraordinary importance, although their applicability in resolving metabolism's fine structure has been restricted by their intrinsic requirement of sufficient and sufficiently pure materials. Mass spectrometry has been a key technology, especially when coupled with high-performance separation technologies and emerging informatic and database solutions. Even more so, the collective of artificial intelligence technologies are rapidly evolving to help solve the metabolite characterization conundrum. This perspective describes this challenge, how it was historically addressed, and how metabolomics is evolving to address it today and in the future.
    Keywords:  artificial intelligence; biochemistry; mass spectrometry; metabolites; nuclear magnetic resonance; structure; unknowns
    DOI:  https://doi.org/10.1016/j.cmet.2021.11.005
  22. Proc Natl Acad Sci U S A. 2022 Jan 11. pii: e2112040119. [Epub ahead of print]119(2):
      Fate and behavior of neural progenitor cells are tightly regulated during mammalian brain development. Metabolic pathways, such as glycolysis and oxidative phosphorylation, that are required for supplying energy and providing molecular building blocks to generate cells govern progenitor function. However, the role of de novo lipogenesis, which is the conversion of glucose into fatty acids through the multienzyme protein fatty acid synthase (FASN), for brain development remains unknown. Using Emx1Cre-mediated, tissue-specific deletion of Fasn in the mouse embryonic telencephalon, we show that loss of FASN causes severe microcephaly, largely due to altered polarity of apical, radial glia progenitors and reduced progenitor proliferation. Furthermore, genetic deletion and pharmacological inhibition of FASN in human embryonic stem cell-derived forebrain organoids identifies a conserved role of FASN-dependent lipogenesis for radial glia cell polarity in human brain organoids. Thus, our data establish a role of de novo lipogenesis for mouse and human brain development and identify a link between progenitor-cell polarity and lipid metabolism.
    Keywords:  lipogenesis; neural stem cell; neurogenesis; polarity
    DOI:  https://doi.org/10.1073/pnas.2112040119
  23. Mol Syst Biol. 2022 Jan;18(1): e10704
      Central carbon metabolism is highly conserved across microbial species, but can catalyze very different pathways depending on the organism and their ecological niche. Here, we study the dynamic reorganization of central metabolism after switches between the two major opposing pathway configurations of central carbon metabolism, glycolysis, and gluconeogenesis in Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida. We combined growth dynamics and dynamic changes in intracellular metabolite levels with a coarse-grained model that integrates fluxes, regulation, protein synthesis, and growth and uncovered fundamental limitations of the regulatory network: After nutrient shifts, metabolite concentrations collapse to their equilibrium, rendering the cell unable to sense which direction the flux is supposed to flow through the metabolic network. The cell can partially alleviate this by picking a preferred direction of regulation at the expense of increasing lag times in the opposite direction. Moreover, decreasing both lag times simultaneously comes at the cost of reduced growth rate or higher futile cycling between metabolic enzymes. These three trade-offs can explain why microorganisms specialize for either glycolytic or gluconeogenic substrates and can help elucidate the complex growth patterns exhibited by different microbial species.
    Keywords:  flux sensing; lag time; metabolism; specialization; trade-off
    DOI:  https://doi.org/10.15252/msb.202110704
  24. Cell. 2021 Dec 29. pii: S0092-8674(21)01453-7. [Epub ahead of print]
      Nuclear pore complexes (NPCs) mediate the nucleocytoplasmic transport of macromolecules. Here we provide a structure of the isolated yeast NPC in which the inner ring is resolved by cryo-EM at sub-nanometer resolution to show how flexible connectors tie together different structural and functional layers. These connectors may be targets for phosphorylation and regulated disassembly in cells with an open mitosis. Moreover, some nucleoporin pairs and transport factors have similar interaction motifs, which suggests an evolutionary and mechanistic link between assembly and transport. We provide evidence for three major NPC variants that may foreshadow functional specializations at the nuclear periphery. Cryo-electron tomography extended these studies, providing a model of the in situ NPC with a radially expanded inner ring. Our comprehensive model reveals features of the nuclear basket and central transporter, suggests a role for the lumenal Pom152 ring in restricting dilation, and highlights structural plasticity that may be required for transport.
    Keywords:  NPC evolution; Nuclear pore complex; cryo-electron microscopy; cryo-electron tomography; inner ring dilation; nuclear basket; nucleocytoplasmic transport; nucleoporins; structural isoforms
    DOI:  https://doi.org/10.1016/j.cell.2021.12.015
  25. iScience. 2022 Jan 21. 25(1): 103574
      Heart disease is the leading cause of death with no method to repair damaged myocardium due to the limited proliferative capacity of adult cardiomyocytes. Curiously, mouse neonates and zebrafish can regenerate their hearts via cardiomyocyte de-differentiation and proliferation. However, a molecular mechanism of why these cardiomyocytes can re-enter cell cycle is poorly understood. Here, we identify a unique metabolic state that primes adult zebrafish and neonatal mouse ventricular cardiomyocytes to proliferate. Zebrafish and neonatal mouse hearts display elevated glutamine levels, predisposing them to amino-acid-driven activation of TOR, and that TOR activation is required for zebrafish cardiomyocyte regeneration in vivo. Through a multi-omics approach with cellular validation we identify metabolic and mitochondrial changes during the first week of regeneration. These data suggest that regeneration of zebrafish myocardium is driven by metabolic remodeling and reveals a unique metabolic regulator, TOR-primed state, in which zebrafish and mammalian cardiomyocytes are regeneration competent.
    Keywords:  Biological sciences; Cell biology; Tissue Engineering
    DOI:  https://doi.org/10.1016/j.isci.2021.103574
  26. Cell Metab. 2022 Jan 04. pii: S1550-4131(21)00623-9. [Epub ahead of print]34(1): 171-183.e6
      Inexorable increases in insulin resistance, lipolysis, and hepatic glucose production (HGP) are hallmarks of type 2 diabetes. Previously, we showed that peripheral delivery of exogenous fibroblast growth factor 1 (FGF1) has robust anti-diabetic effects mediated by the adipose FGF receptor (FGFR) 1. However, its mechanism of action is not known. Here, we report that FGF1 acutely lowers HGP by suppressing adipose lipolysis. On a molecular level, FGF1 inhibits the cAMP-protein kinase A axis by activating phosphodiesterase 4D (PDE4D), which separates it mechanistically from the inhibitory actions of insulin via PDE3B. We identify Ser44 as an FGF1-induced regulatory phosphorylation site in PDE4D that is modulated by the feed-fast cycle. These findings establish the FGF1/PDE4 pathway as an alternate regulator of the adipose-HGP axis and identify FGF1 as an unrecognized regulator of fatty acid homeostasis.
    Keywords:  FGF1; PDE4; cAMP; hepatic glucose production; insulin; lipolysis; type 2 diabetes
    DOI:  https://doi.org/10.1016/j.cmet.2021.12.004
  27. J Cancer. 2022 ;13(1): 304-312
      Kidney cancers including clear cell carcinoma (RCC) are identified with very vulnerable mitochondria DNA (mtDNA) and frequent epigenetic aberrations. Bone metastasis from RCC is prevalent and destructive. Bone marrow contains a quite hypoxic microenvironment that usually insitigate 50% of hypermethylation events in conferring a selective advantage for tumor growth. We hypothesized that hypermethylation of mtDNA in RCC cells would significantly contribute to bone metastatic tumor progression. Methylation-specific polymerase chain reaction assay (MSP) was adopted to measure the methylation status of D-loop region of mtDNA in 15 pairs of bone metastatic and primary RCC as well as tumor adjescent normal kidney tissues. mtDNA copy number was examined by the real-time quantitative polymerase chain reaction (qPCR). Western blotting analysis was used to measure the accumulation of several DNA methyltransferases (DNMTs) in the mitochondria and nucleus fractions of bone metastatic RCC cells. mRNA expression of mitochondria encoded genes was examined by RT-PCR. Reactive oxygen species (ROS), mitochondrial membrane potential and ATP content were measured using in vitro cells treated with de-methylation drug 5-Azacytidine (5-Aza). Non-invasive bioluminescent imaging was performed to monitor tumor occurrence in skeleton in mice. Our results showed that the D-loop region in bone metastatic tumor cells was markedly hypermethylated than those in primary RCC tumor cells, that is associated with a decreased mtDNA copy number and accumulation of DNMT1 in the mitochondria. The bone-tropism tumor colonization and progression of RCC cells was significantly suppressed by demethylating the D-loop region of mtDNA and reducing the intracellular level of ROS and ATP by 5-Aza treatment. In conclusion, our study provided a direct association between hypermethylation of mtDNA in RCC with bone metastastic tumor growth.
    Keywords:  5-Azacytidine; Bone metastasis; clear cell carcinoma; hypermethylation; mitochondria DNA
    DOI:  https://doi.org/10.7150/jca.62278
  28. Cell Rep. 2022 Jan 04. pii: S2211-1247(21)01691-0. [Epub ahead of print]38(1): 110190
      Translocation renal cell carcinoma (tRCC) is a poorly characterized subtype of kidney cancer driven by MiT/TFE gene fusions. Here, we define the landmarks of tRCC through an integrative analysis of 152 patients with tRCC identified across genomic, clinical trial, and retrospective cohorts. Most tRCCs harbor few somatic alterations apart from MiT/TFE fusions and homozygous deletions at chromosome 9p21.3 (19.2% of cases). Transcriptionally, tRCCs display a heightened NRF2-driven antioxidant response that is associated with resistance to targeted therapies. Consistently, we find that outcomes for patients with tRCC treated with vascular endothelial growth factor receptor inhibitors (VEGFR-TKIs) are worse than those treated with immune checkpoint inhibitors (ICI). Using multiparametric immunofluorescence, we find that the tumors are infiltrated with CD8+ T cells, though the T cells harbor an exhaustion immunophenotype distinct from that of clear cell RCC. Our findings comprehensively define the clinical and molecular features of tRCC and may inspire new therapeutic hypotheses.
    Keywords:  MITF; NRF2; TFE3; TFEB; VEGFR; genomics; immune checkpoint inhibition; immunotherapy; oxidative stress; translocation renal cell carcinoma
    DOI:  https://doi.org/10.1016/j.celrep.2021.110190
  29. Front Cell Dev Biol. 2021 ;9 795838
      The regulatory role of actin cytoskeleton on mitochondrial function is a growing research field, but the underlying molecular mechanisms remain poorly understood. Specific actin-binding proteins (ABPs), such as Gelsolin, have also been shown to participate in the pathophysiology of mitochondrial OXPHOS disorders through yet to be defined mechanisms. In this mini-review, we will summarize the experimental evidence supporting the fundamental roles of actin cytoskeleton and ABPs on mitochondrial trafficking, dynamics, biogenesis, metabolism and apoptosis, with a particular focus on Gelsolin involvement in mitochondrial disorders. The functional interplay between the actin cytoskeleton, ABPs and mitochondrial membranes for the regulation of cellular homeostasis thus emerges as a new exciting field for future research and therapeutic approaches.
    Keywords:  OXPHOS system; actin cytoskeleton; gelsolin; mitochondria; mitochondrial disease
    DOI:  https://doi.org/10.3389/fcell.2021.795838
  30. Cell. 2021 Dec 30. pii: S0092-8674(21)01450-1. [Epub ahead of print]
      How cells become specialized, or "mature," is important for cell and developmental biology. While maturity is usually deemed a terminal fate, it may be more helpful to consider maturation not as a switch but as a dynamic continuum of adaptive phenotypic states set by genetic and environment programing. The hallmarks of maturity comprise changes in anatomy (form, gene circuitry, and interconnectivity) and physiology (function, rhythms, and proliferation) that confer adaptive behavior. We discuss efforts to harness their chemical (nutrients, oxygen, and growth factors) and physical (mechanical, spatial, and electrical) triggers in vitro and in vivo and how maturation strategies may support disease research and regenerative medicine.
    Keywords:  biomaterials; cell maturity; circadian rhythms; directed stem cell differentiation; energy metabolism; machine–tissue interfaces; microfluidic chips; nanotechnology; organoids; tissue anatomy and physiology
    DOI:  https://doi.org/10.1016/j.cell.2021.12.012
  31. Biosci Rep. 2022 Jan 06. pii: BSR20211558. [Epub ahead of print]
      Chromatin, the complex of DNA and histone proteins, serves as a main integrator of cellular signals. Increasing evidence links cellular functional to chromatin state. Indeed, different metabolites are emerging as modulators of chromatin function and structure. Alterations in chromatin state are decisive for regulating all aspects of genome function and ultimately have the potential to produce phenotypic changes. Several metabolites such as acetyl-CoA, S-adenosyl methionine (SAM) or adenosine triphosphate (ATP) have now been well characterized as main substrates or cofactors of chromatin modifying enzymes. However, there are other metabolites that can directly interact with chromatin influencing its state or that modulate the properties of chromatin regulatory factors. Also, there is a growing list of atypical enzymatic and non-enzymatic chromatin modifications that originate from different cellular pathways that have not been in the limelight of chromatin research. Here, we summarize different properties and functions of uncommon regulatory molecules originating from intermediate metabolism of lipids, carbohydrates and amino acids. Based on the various modes of action on chromatin and the plethora of putative, so far not described chromatin regulating metabolites, we propose that there are more links between cellular functional state and chromatin regulation to be discovered. We hypothesize that these connections could provide interesting starting points for interfering with cellular epigenetic states at a molecular level.
    Keywords:  DNA; chromatin; epigenetcis; histones; metabolites; regulation
    DOI:  https://doi.org/10.1042/BSR20211558