bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2022‒02‒27
33 papers selected by
Christian Frezza,



  1. iScience. 2022 Feb 18. 25(2): 103827
      To overcome oxidative, inflammatory, and metabolic stress, cells have evolved cytoprotective protein networks controlled by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and its negative regulator, Kelch-like ECH associated protein 1 (Keap1). Here, using high-resolution mass spectrometry we characterize the proteomes of macrophages with altered Nrf2 status revealing significant differences among the genotypes in metabolism and redox homeostasis, which were validated with respirometry and metabolomics. Nrf2 affected the proteome following lipopolysaccharide (LPS) stimulation, with alterations in redox, carbohydrate and lipid metabolism, and innate immunity. Notably, Nrf2 activation promoted mitochondrial fusion. The Keap1 inhibitor, 4-octyl itaconate remodeled the inflammatory macrophage proteome, increasing redox and suppressing type I interferon (IFN) response. Similarly, pharmacologic or genetic Nrf2 activation inhibited the transcription of IFN-β and its downstream effector IFIT2 during LPS stimulation. These data suggest that Nrf2 activation facilitates metabolic reprogramming and mitochondrial adaptation, and finetunes the innate immune response in macrophages.
    Keywords:  Biochemistry; Immunology; Proteomics
    DOI:  https://doi.org/10.1016/j.isci.2022.103827
  2. Cells. 2022 Feb 11. pii: 637. [Epub ahead of print]11(4):
      Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as 'mitochondrial medicine'.
    Keywords:  Leigh syndrome; MELAS; MERRF; OXPHOS; POLG; mitochondrial disease; mitochondrial respiratory chain
    DOI:  https://doi.org/10.3390/cells11040637
  3. Dev Cell. 2022 Feb 15. pii: S1534-5807(22)00070-3. [Epub ahead of print]
      The coordinated regulation of growth control and metabolic pathways is required to meet the energetic and biosynthetic demands associated with proliferation. Emerging evidence suggests that the Hippo pathway effector Yes-associated protein 1 (YAP) reprograms cellular metabolism to meet the anabolic demands of growth, although the mechanisms involved are poorly understood. Here, we demonstrate that YAP co-opts the sterol regulatory element-binding protein (SREBP)-dependent lipogenic program to facilitate proliferation and tissue growth. Mechanistically, YAP stimulates de novo lipogenesis via mechanistic target of rapamcyin (mTOR) complex 1 (mTORC1) signaling and subsequent activation of SREBP. Importantly, YAP-dependent regulation of serum- and glucocorticoid-regulated kinase 1 (SGK1) is required to activate mTORC1/SREBP and stimulate de novo lipogenesis. We also find that the SREBP target genes fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD) are conditionally required to support YAP-dependent proliferation and tissue growth. These studies reveal that de novo lipogenesis is a metabolic vulnerability that can be targeted to disrupt YAP-dependent proliferation and tissue growth.
    Keywords:  SGK1; SREBP; YAP; cell metabolism; growth; lipogenesis; mTORC1; proliferation
    DOI:  https://doi.org/10.1016/j.devcel.2022.02.004
  4. J Clin Invest. 2022 Feb 24. pii: e148852. [Epub ahead of print]
      Brown adipose tissue (BAT), a crucial heat-generating organ, regulate whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated in the pathogenesis of mitochondrial dysfunction and impaired thermogenesis. However, the link between BAT inflammation and systematic metabolism remains unclear. Herein, we use mice with BAT deficiency of thioredoxin-2 (TRX2), a protein that scavenges mitochondrial reactive oxygen species (ROS), to evaluate the impact of BAT inflammation on metabolism and thermogenesis and its underlying mechanism. Our results describe that BAT-specific TRX2 ablation improves systematic metabolic performance via enhancing lipid uptake, which protects mice from diet-induced obesity, hypertriglyceridemia, and insulin resistance. TRX2 deficiency impairs adaptive thermogenesis by suppressing fatty acid oxidation. Mechanistically, loss of TRX2 induces excessive mitochondrial ROS, mitochondrial integrity disruption, and cytosolic release of mitochondrial DNA, which in turn activate aberrant innate immune responses in BAT, including the cGAS-STING and the NLRP3 inflammasome pathways. We identify NLRP3 as a key converging point, as its inhibition reverses both the thermogenesis defect and the metabolic benefits seen under nutrient overload in BAT-specific Trx2-deficient mice. In conclusion, we identify TRX2 as a critical hub integrating oxidative stress, inflammation, and lipid metabolism in BAT; uncovering an adaptive mechanism underlying the link between BAT inflammation and systematic metabolism.
    Keywords:  Adipose tissue; Inflammation; Innate immunity; Metabolism; Mitochondria
    DOI:  https://doi.org/10.1172/JCI148852
  5. Oncogene. 2022 Feb 22.
      Glioblastomas (GBMs) preferentially generate acetyl-CoA from acetate as a fuel source to promote tumor growth. O-GlcNAcylation has been shown to be elevated by increasing O-GlcNAc transferase (OGT) in many cancers and reduced O-GlcNAcylation can block cancer growth. Here, we identify a novel mechanism whereby OGT regulates acetate-dependent acetyl-CoA and lipid production by regulating phosphorylation of acetyl-CoA synthetase 2 (ACSS2) by cyclin-dependent kinase 5 (CDK5). OGT is required and sufficient for GBM cell growth and regulates acetate conversion to acetyl-CoA and lipids. Elevating O-GlcNAcylation in GBM cells increases phosphorylation of ACSS2 on Ser-267 in a CDK5-dependent manner. Importantly, we show that ACSS2 Ser-267 phosphorylation regulates its stability by reducing polyubiquitination and degradation. ACSS2 Ser-267 is critical for OGT-mediated GBM growth as overexpression of ACSS2 Ser-267 phospho-mimetic rescues growth in vitro and in vivo. Importantly, we show that pharmacologically targeting OGT and CDK5 reduces GBM growth ex vivo. Thus, the OGT/CDK5/ACSS2 pathway may be a way to target altered metabolic dependencies in brain tumors.
    DOI:  https://doi.org/10.1038/s41388-022-02237-6
  6. Redox Biol. 2022 Feb 06. pii: S2213-2317(22)00030-1. [Epub ahead of print]51 102258
      Pathologies associated with tissue ischemia/reperfusion (I/R) in highly metabolizing organs such as the brain and heart are leading causes of death and disability in humans. Molecular mechanisms underlying mitochondrial dysfunction during acute injury in I/R are tissue-specific, but their details are not completely understood. A metabolic shift and accumulation of substrates of reverse electron transfer (RET) such as succinate are observed in tissue ischemia, making mitochondrial complex I of the respiratory chain (NADH:ubiquinone oxidoreductase) the most vulnerable enzyme to the following reperfusion. It has been shown that brain complex I is predisposed to losing its flavin mononucleotide (FMN) cofactor when maintained in the reduced state in conditions of RET both in vitro and in vivo. Here we investigated the process of redox-dependent dissociation of FMN from mitochondrial complex I in brain and heart mitochondria. In contrast to the brain enzyme, cardiac complex I does not lose FMN when reduced in RET conditions. We proposed that the different kinetics of FMN loss during RET is due to the presence of brain-specific long 50 kDa isoform of the NDUFV3 subunit of complex I, which is absent in the heart where only the canonical 10 kDa short isoform is found. Our simulation studies suggest that the long NDUFV3 isoform can reach toward the FMN binding pocket and affect the nucleotide affinity to the apoenzyme. For the first time, we demonstrated a potential functional role of tissue-specific isoforms of complex I, providing the distinct molecular mechanism of I/R-induced mitochondrial impairment in cardiac and cerebral tissues. By combining functional studies of intact complex I and molecular structure simulations, we defined the critical difference between the brain and heart enzyme and suggested insights into the redox-dependent inactivation mechanisms of complex I during I/R injury in both tissues.
    Keywords:  Brain; Cardiac infarction; Flavin mononucleotide; Heart; Isoforms; Mitochondrial complex I; Reverse electron transfer; Stroke; Tissue-specificity
    DOI:  https://doi.org/10.1016/j.redox.2022.102258
  7. Proc Natl Acad Sci U S A. 2022 Mar 01. pii: e2110357119. [Epub ahead of print]119(9):
      Cytochrome c oxidase (COX) assembly factor 7 (COA7) is a metazoan-specific assembly factor, critical for the biogenesis of mitochondrial complex IV (cytochrome c oxidase). Although mutations in COA7 have been linked to complex IV assembly defects and neurological conditions such as peripheral neuropathy, ataxia, and leukoencephalopathy, the precise role COA7 plays in the biogenesis of complex IV is not known. Here, we show that loss of COA7 blocks complex IV assembly after the initial step where the COX1 module is built, progression from which requires the incorporation of copper and addition of the COX2 and COX3 modules. The crystal structure of COA7, determined to 2.4 Å resolution, reveals a banana-shaped molecule composed of five helix-turn-helix (α/α) repeats, tethered by disulfide bonds. COA7 interacts transiently with the copper metallochaperones SCO1 and SCO2 and catalyzes the reduction of disulfide bonds within these proteins, which are crucial for copper relay to COX2. COA7 binds heme with micromolar affinity, through axial ligation to the central iron atom by histidine and methionine residues. We therefore propose that COA7 is a heme-binding disulfide reductase for regenerating the copper relay system that underpins complex IV assembly.
    Keywords:  COA7; X-ray crystallography; cytochrome c oxidase; heme; mitochondria
    DOI:  https://doi.org/10.1073/pnas.2110357119
  8. Biomedicines. 2022 Feb 01. pii: 348. [Epub ahead of print]10(2):
      Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma in adults and reveals distinct genetic and metabolic signatures. NF-κB transcription factor family is involved in diverse biological processes enabling tumor development and resistance to anticancer-therapy through activation of its two main pathways, the canonical and the alternative NF-κB pathways, the main actor of the latter being the RelB NF-kB subunit. RelB DNA binding activity is frequently activated in DLBCL patients and cell lines. RelB activation defines a new DLBCL subgroup with dismal outcome upon immunochemotherapy, and RelB confers DLBCL cell resistance to DNA damage. However, whether RelB can impact on DLBCL cell metabolism and survival upon metabolic stress is unknown. Here, we reveal that RelB controls DLBCL oxidative energetic metabolism. Accordingly, RelB inhibition reduce DLBCL mitochondrial ATP production, and sensitizes DLBCL cells to apoptosis induced by Metformin and L-asparaginase (®Kidrolase), two FDA approved antimetabolic drugs targeting mitochondrial metabolism. RelB also confers DLBCL cell resistance to glutamine deprivation, an essential amino acid that feeds the TCA cycle. Taken together, our findings uncover a new role for RelB in the regulation of DLBCL cell metabolism and DLBCL cell survival upon metabolic stress.
    Keywords:  DLBCL; NF-κB; RelB; apoptosis; lymphoma; metabolism
    DOI:  https://doi.org/10.3390/biomedicines10020348
  9. EMBO Rep. 2022 Feb 24. e53746
      Cachexia is a wasting syndrome characterized by devastating skeletal muscle atrophy that dramatically increases mortality in various diseases, most notably in cancer patients with a penetrance of up to 80%. Knowledge regarding the mechanism of cancer-induced cachexia remains very scarce, making cachexia an unmet medical need. In this study, we discovered strong alterations of iron metabolism in the skeletal muscle of both cancer patients and tumor-bearing mice, characterized by decreased iron availability in mitochondria. We found that modulation of iron levels directly influences myotube size in vitro and muscle mass in otherwise healthy mice. Furthermore, iron supplementation was sufficient to preserve both muscle function and mass, prolong survival in tumor-bearing mice, and even rescues strength in human subjects within an unexpectedly short time frame. Importantly, iron supplementation refuels mitochondrial oxidative metabolism and energy production. Overall, our findings provide new mechanistic insights in cancer-induced skeletal muscle wasting, and support targeting iron metabolism as a potential therapeutic option for muscle wasting diseases.
    Keywords:  cachexia; iron; metabolism; mitochondria; muscle
    DOI:  https://doi.org/10.15252/embr.202153746
  10. Redox Biol. 2022 Feb 10. pii: S2213-2317(22)00037-4. [Epub ahead of print]51 102265
      BTB-and-CNC homologue 1 (BACH1), a heme-regulated transcription factor, mediates innate immune responses via its functional role in macrophages. BACH1 has recently been shown to modulate mitochondrial metabolism in cancer cells. In the current study, we utilized a proteomics approach and demonstrate that genetic deletion of BACH1 in mouse macrophages is associated with decreased levels of various mitochondrial proteins, particularly mitochondrial complex I. Bioenergetic studies revealed alterations of mitochondrial energy metabolism in BACH1-/- macrophages with a shift towards increased glycolysis and decreased oxidative phosphorylation. Moreover, these cells exhibited enhanced mitochondrial membrane potential and generation of mitochondrial reactive oxygen species (mtROS) along with lower levels of mitophagy. Notably, a higher inducibility of NLRP3 inflammasome activation in response to ATP and nigericin following challenge with lipopolysaccharide (LPS) was observed in BACH1-deficient macrophages compared to wild-type cells. Mechanistically, pharmacological inhibition of mtROS markedly attenuated inflammasome activation. In addition, it is shown that inducible nitric oxide synthase and cyclooxygenase-2, both of which are markedly induced by LPS in macrophages, are directly implicated in BACH1-dependent regulation of NLRP3 inflammasome activation. Taken together, the current findings indicate that BACH1 is critical for immunomodulation of macrophages and may serve as a target for therapeutic approaches in inflammatory disorders.
    Keywords:  BACH1; Inflammation; Macrophages; Mitochondrial complex 1; Mitochondrial metabolism; NLRP3 inflammasome
    DOI:  https://doi.org/10.1016/j.redox.2022.102265
  11. Mol Cell. 2022 Feb 11. pii: S1097-2765(22)00087-9. [Epub ahead of print]
      A mesenchymal tumor phenotype associates with immunotherapy resistance, although the mechanism is unclear. Here, we identified FBXO7 as a maintenance regulator of mesenchymal and immune evasion phenotypes of cancer cells. FBXO7 bound and stabilized SIX1 co-transcriptional regulator EYA2, stimulating mesenchymal gene expression and suppressing IFNα/β, chemokines CXCL9/10, and antigen presentation machinery, driven by AXL extracellular ligand GAS6. Ubiquitin ligase SCFFBXW7 antagonized this pathway by promoting EYA2 degradation. Targeting EYA2 Tyr phosphatase activity decreased mesenchymal phenotypes and enhanced cancer cell immunogenicity, resulting in attenuated tumor growth and metastasis, increased infiltration of cytotoxic T and NK cells, and enhanced anti-PD-1 therapy response in mouse tumor models. FBXO7 expression correlated with mesenchymal and immune-suppressive signatures in patients with cancer. An FBXO7-immune gene signature predicted immunotherapy responses. Collectively, the FBXO7/EYA2-SCFFBXW7 axis maintains mesenchymal and immune evasion phenotypes of cancer cells, providing rationale to evaluate FBXO7/EYA2 inhibitors in combination with immune-based therapies to enhance onco-immunotherapy responses.
    Keywords:  AXL; EYA2; FBXO7; FBXW7; GAS6; anti-PD-1 therapy; immune evasion; mesenchymal phenotype
    DOI:  https://doi.org/10.1016/j.molcel.2022.01.022
  12. Biomolecules. 2022 Feb 12. pii: 297. [Epub ahead of print]12(2):
      Cancer metastasis is the leading cause of cancer-related mortality and the process of the epithelial-to-mesenchymal transition (EMT) is crucial for cancer metastasis. Both partial and complete EMT have been reported to influence the metabolic plasticity of cancer cells in terms of switching among the oxidative phosphorylation, fatty acid oxidation and glycolysis pathways. However, a comprehensive analysis of these major metabolic pathways and their associations with EMT across different cancers is lacking. Here, we analyse more than 180 cancer cell datasets and show the diverse associations of these metabolic pathways with the EMT status of cancer cells. Our bulk data analysis shows that EMT generally positively correlates with glycolysis but negatively with oxidative phosphorylation and fatty acid metabolism. These correlations are also consistent at the level of their molecular master regulators, namely AMPK and HIF1α. Yet, these associations are shown to not be universal. The analysis of single-cell data for EMT induction shows dynamic changes along the different axes of metabolic pathways, consistent with general trends seen in bulk samples. Further, assessing the association of EMT and metabolic activity with patient survival shows that a higher extent of EMT and glycolysis predicts a worse prognosis in many cancers. Together, our results reveal the underlying patterns of metabolic plasticity and heterogeneity as cancer cells traverse through the epithelial-hybrid-mesenchymal spectrum of states.
    Keywords:  AMPK; HIF1α; cancer metabolism; epithelial–mesenchymal transition; fatty acid metabolism; glycolysis; oxidative phosphorylation
    DOI:  https://doi.org/10.3390/biom12020297
  13. Cell Rep. 2022 Feb 22. pii: S2211-1247(22)00133-4. [Epub ahead of print]38(8): 110409
      Thyroid hormones (THs) are key metabolic regulators coordinating short- and long-term energy needs. In skeletal muscle, THs modulate energy metabolism in pathophysiological conditions. Indeed, hypo- and hyperthyroidism are leading causes of muscle weakness and strength; however, the metabolic pathways underlying these effects are still poorly understood. Using molecular, biochemical, and isotope-tracing approaches combined with mass spectrometry and denervation experiments, we find that THs regulate glutamine metabolism and anaplerotic fluxes by up-regulating the glutamate pyruvate transaminase 2 (GPT2) gene. In humans, GPT2 autosomal recessive mutations cause a neurological syndrome characterized by intellectual disability, microcephaly, and progressive motor symptoms. Here, we demonstrate a role of the TH/GPT2 axis in skeletal muscle in which it regulates muscle weight and fiber diameter in resting and atrophic conditions and results in protection from muscle loss during atrophy. These results describe an anabolic route by which THs rewire glutamine metabolism toward the maintenance of muscle mass.
    Keywords:  GPT2; glutamine metabolism; skeletal muscle; thyroid hormone; type 2 deiodinase
    DOI:  https://doi.org/10.1016/j.celrep.2022.110409
  14. Nat Biotechnol. 2022 Feb 24.
      The combination of single-cell transcriptomics with mitochondrial DNA variant detection can be used to establish lineage relationships in primary human cells, but current methods are not scalable to interrogate complex tissues. Here, we combine common 3' single-cell RNA-sequencing protocols with mitochondrial transcriptome enrichment to increase coverage by more than 50-fold, enabling high-confidence mutation detection. The method successfully identifies skewed immune-cell expansions in primary human clonal hematopoiesis.
    DOI:  https://doi.org/10.1038/s41587-022-01210-8
  15. Proc Natl Acad Sci U S A. 2022 Feb 22. pii: e2107266119. [Epub ahead of print]119(8):
      In search of redox mechanisms in breast cancer, we uncovered a striking role for glutathione peroxidase 2 (GPx2) in oncogenic signaling and patient survival. GPx2 loss stimulates malignant progression due to reactive oxygen species/hypoxia inducible factor-α (HIF1α)/VEGFA (vascular endothelial growth factor A) signaling, causing poor perfusion and hypoxia, which were reversed by GPx2 reexpression or HIF1α inhibition. Ingenuity Pathway Analysis revealed a link between GPx2 loss, tumor angiogenesis, metabolic modulation, and HIF1α signaling. Single-cell RNA analysis and bioenergetic profiling revealed that GPx2 loss stimulated the Warburg effect in most tumor cell subpopulations, except for one cluster, which was capable of oxidative phosphorylation and glycolysis, as confirmed by coexpression of phosphorylated-AMPK and GLUT1. These findings underscore a unique role for redox signaling by GPx2 dysregulation in breast cancer, underlying tumor heterogeneity, leading to metabolic plasticity and malignant progression.
    Keywords:  HIF1α; ROS signaling; breast cancer; glutathione peroxidase 2; metabolism
    DOI:  https://doi.org/10.1073/pnas.2107266119
  16. J Biol Chem. 2022 Feb 16. pii: S0021-9258(22)00180-6. [Epub ahead of print] 101740
      Lysosomes serve as dynamic regulators of cell and organismal physiology by integrating the degradation of macromolecules with receptor and nutrient signaling. Previous studies have established that activation of the transcription factors TFEB and TFE3 induces the expression of lysosomal genes and proteins in signaling-inactive starved cells, that is, under conditions when activity of the master regulator of nutrient-sensing signaling mTORC1 is repressed. How lysosome biogenesis is triggered in signaling-active cells is incompletely understood. Here we identify a role for calcium release from the lumen of the endoplasmic reticulum (ER) in the control of lysosome biogenesis that is independent of mTORC1. We show using functional imaging that calcium efflux from ER stores induced by inositol-triphosphate [IP3] accumulation upon depletion of INPP5A, an inositol 5-phosphatase downregulated in cancer and defective in spinocerebellar ataxia, or receptor-mediated phospholipase C activation leads to the induction of lysosome biogenesis. This mechanism involves calcineurin and the nuclear translocation and elevated transcriptional activity of TFEB/ TFE3. Our findings reveal a crucial function for INPP5A-mediated IP3 hydrolysis in the control of lysosome biogenesis via TFEB/ TFE3, thereby contributing to our understanding how cells are able to maintain their lysosome content under conditions of active receptor and nutrient signaling.
    Keywords:  calcium; imaging; inositol-triphosphate; lysosome biogenesis; signaling
    DOI:  https://doi.org/10.1016/j.jbc.2022.101740
  17. Curr Opin Biotechnol. 2022 Feb 16. pii: S0958-1669(22)00021-0. [Epub ahead of print]75 102695
      Single-carbon (C1, or one-carbon) substrates are promising feedstocks for sustainable biofuel and biochemical production. Crucial to the goal of engineering C1-utilizing strains for improved production is a quantitative understanding of the organization, regulation and rates of the reactions that underpin C1 metabolism. 13C Metabolic flux analysis (MFA) is a well-established platform for interrogating these questions with multi-carbon substrates, and uses the differential labeling of metabolites that results from feeding a substrate with position-specific incorporation of 13C in order to infer quantitative fluxes and pathway topology. Adapting isotopic tracer approaches to C1 metabolism, where position-specific substrate labeling is impossible, requires additional experimental considerations. Here we review recent studies that have developed isotopic tracer approaches to overcome the challenge of uniform metabolite labeling and provide quantitative insight into C1 metabolism.
    DOI:  https://doi.org/10.1016/j.copbio.2022.102695
  18. J Biol Chem. 2022 Feb 17. pii: S0021-9258(22)00184-3. [Epub ahead of print] 101744
      The mammalian target of rapamycin complex 1 (mTORC1) signaling pathway is activated by intracellular nutritional sufficiency and extracellular growth signals. It has been reported that mTORC1 acts as a hub that integrates these inputs to orchestrate a number of cellular responses, including translation, nucleotide synthesis, lipid synthesis, and lysosome biogenesis. However, little is known about specific control of mTORC1 signaling downstream of this complex. Here, we demonstrate that Ragulator, a heteropentameric protein complex required for mTORC1 activation in response to amino acids, is critical for inhibiting the nuclear translocation of transcription factor EB (TFEB). We established a unique RAW264.7 clone that lacked Ragulator but retained total mTORC1 activity. In a nutrition-sufficient state, the nuclear translocation of TFEB was markedly enhanced in the clone despite total mTORC1 kinase activity. In addition, as a cellular phenotype, the number of lysosomes was increased by ten-fold in the Ragulator-deficient clone compared to that of control cells. These findings indicate that mTORC1 essentially requires the Ragulator complex for regulating the subcellular distribution of TFEB. Our findings also suggest that other scaffold proteins may be associated with mTORC1 for the specific regulation of downstream signaling.
    Keywords:  Ragulator; lysosome; mammalian target of rapamycin (mTOR); nuclear translocation; scaffold protein; transcription factor EB
    DOI:  https://doi.org/10.1016/j.jbc.2022.101744
  19. Elife. 2022 Feb 22. pii: e74606. [Epub ahead of print]11
      Mitochondrial activity is crucial for the plasticity of central synapses, but how the firing pattern of pre- and postsynaptic neurons affects the mitochondria remains elusive. We recorded changes in the fluorescence of cytosolic and mitochondrial Ca2+ indicators in cell bodies, axons, and dendrites of cortical pyramidal neurons in mouse brain slices while evoking pre- and postsynaptic spikes. Postsynaptic spike firing elicited fast mitochondrial Ca2+ responses that were about threefold larger in the somas and apical dendrites than in basal dendrites and axons. The amplitude of these responses and metabolic activity were extremely sensitive to the firing frequency. Furthermore, while an EPSP alone caused no detectable Ca2+ elevation in the dendritic mitochondria, the coincidence of EPSP with a backpropagating spike produced prominent, highly localized mitochondrial Ca2+ hotspots. Our results indicate that mitochondria decode the spike firing frequency and the Hebbian temporal coincidences into the Ca2+ signals, which are further translated into the metabolic output and most probably lead to long-term changes in synaptic efficacy.
    Keywords:  mouse; neuroscience
    DOI:  https://doi.org/10.7554/eLife.74606
  20. Mitochondrion. 2022 Feb 16. pii: S1567-7249(22)00010-1. [Epub ahead of print]64 1-18
      Mitochondria are essential for neuronal survival and mitochondrial dysfunction is a hallmark of neurodegeneration. The loss in mitochondrial energy production, oxidative stress, and changes in calcium handling are associated with neurodegenerative diseases; however, different sites and types of mitochondrial dysfunction are linked to distinct neuropathologies. Understanding the causal or correlative relationship between changes in mitochondria and neuropathology will lead to new therapeutic strategies. Here, we summarize the evidence of site-specific mitochondrial dysfunction and mitochondrial-related clinical trials for neurodegenerative diseases. We further discuss potential therapeutic approaches, such as mitochondrial transplantation, restoration of mitochondrial function, and pharmacological alleviation of mitochondrial dysfunction.
    Keywords:  Mitochondria-targeting therapeutics; Mitochondrial dysfunction; Neurodegeneration; Optogenetics; Transplantation
    DOI:  https://doi.org/10.1016/j.mito.2022.02.004
  21. Int J Mol Sci. 2022 Feb 18. pii: 2290. [Epub ahead of print]23(4):
      Initially described as lytic bodies due to their degradative and recycling functions, lysosomes play a critical role in metabolic adaptation to nutrient availability. More recently, the contribution of lysosomal proteins to cell signaling has been established, and lysosomes have emerged as signaling hubs that regulate diverse cellular processes, including cell proliferation and cell fate. Deciphering these signaling pathways has revealed an extensive crosstalk between the lysosomal and cell cycle machineries that is only beginning to be understood. Recent studies also indicate that a number of lysosomal proteins are involved in the regulation of embryonic and adult stem cell fate and identity. In this review, we will focus on the role of the lysosome as a signaling platform with an emphasis on its function in integrating nutrient sensing with proliferation and cell cycle progression, as well as in stemness-related features, such as self-renewal and quiescence.
    Keywords:  CDK; cell cycle; cell metabolism; cell signaling; lysosome; mTOR; nutrient sensing; quiescence; self-renewal; stemness
    DOI:  https://doi.org/10.3390/ijms23042290
  22. Cancer Metab. 2022 Feb 22. 10(1): 6
      BACKGROUND: Primary and posttreatment resistance to BRAFV600 mutation-targeting inhibitors leads to disease relapse in a majority of melanoma patients. In many instances, this resistance is promoted by upregulation of mitochondrial oxidative phosphorylation (OxPhos) in melanoma cells. We recently showed that a novel electron transport chain (ETC) complex I inhibitor, IACS-010759 (IACS), abolished OxPhos and significantly inhibited tumor growth of high-OxPhos, BRAF inhibitor (BRAFi)-resistant human melanomas. However, the inhibition was not uniform across different high OxPhos melanomas, and combination with BRAFi did not improve efficacy.METHODS: We performed a high-throughput unbiased combinatorial drug screen of clinically relevant small molecules to identify the most potent combination agent with IACS for inhibiting the growth of high-OxPhos, BRAFi-resistant melanomas. We performed bioenergetics and carbon-13 metabolite tracing to delineate the metabolic basis of sensitization of melanomas to the combination treatment. We performed xenograft tumor growth studies and Reverse-Phase Protein Array (RPPA)-based functional proteomics analysis of tumors from mice fed with regular or high-fat diet to evaluate in vivo molecular basis of sensitization to the combination treatment.
    RESULTS: A combinatorial drug screen and subsequent validation studies identified Atorvastatin (STN), a hydroxymethylglutaryl-coenzyme A reductase inhibitor (HMGCRi), as the most potent treatment combination with IACS to inhibit in vitro cell growth and induce tumor regression or stasis of some BRAFi-resistant melanomas. Bioenergetics analysis revealed a dependence on fatty acid metabolism in melanomas that responded to the combination treatment. RPPA analysis and carbon-13 tracing analysis in these melanoma cells showed that IACS treatment decreased metabolic fuel utilization for fatty acid metabolism, but increased substrate availability for activation of the mevalonate pathway by HMGCR, creating a dependence on this pathway. Functional proteomic analysis showed that IACS treatment inhibited MAPK but activated AKT pathway. Combination treatment with STN counteracted AKT activation.
    CONCLUSIONS: STN and other clinically approved HMGCRi could be promising combinatorial agents for improving the efficacy of ETC inhibitors like IACS in BRAFi-resistant melanomas.
    Keywords:  Fatty acid metabolism; HMGCoA reductase; Melanoma; Oxidative phosphorylation; Statin; Therapeutic resistance
    DOI:  https://doi.org/10.1186/s40170-022-00281-0
  23. Trends Cancer. 2022 Feb 17. pii: S2405-8033(22)00021-8. [Epub ahead of print]
      Epithelial-mesenchymal plasticity (EMP) reflects the capacity of cells to interconvert between epithelial and mesenchymal phenotypes. In cancer, these dynamics ultimately contribute to disease progression. Despite decades of study, a consistent molecular definition of this plasticity remains elusive because of its inherent variability. The advent of quantitative single-cell biology is unveiling unexpected complexity, and new conceptual frameworks are required to understand the emergence and relevance of EMP in cancer. Here, we use principles from multitask optimization to propose that EMP reflects an adaptive response of epithelial cells in response to homeostatic disruption, giving rise to generalist phenotypes. We use this theory to predict properties of these cells and their contribution to tumor progression.
    Keywords:  EMT; Pareto optimality; adaptation; epithelial-mesenchymal plasticity; evolution; plasticity
    DOI:  https://doi.org/10.1016/j.trecan.2022.01.014
  24. Mol Cell. 2022 Feb 16. pii: S1097-2765(22)00105-8. [Epub ahead of print]
      Fumarate is an oncometabolite. However, the mechanism underlying fumarate-exerted tumorigenesis remains unclear. Here, utilizing human type2 papillary renal cell carcinoma (PRCC2) as a model, we show that fumarate accumulates in cells deficient in fumarate hydratase (FH) and inhibits PTEN to activate PI3K/AKT signaling. Mechanistically, fumarate directly reacts with PTEN at cysteine 211 (C211) to form S-(2-succino)-cysteine. Succinated C211 occludes tethering of PTEN with the cellular membrane, thereby diminishing its inhibitory effect on the PI3K/AKT pathway. Functionally, re-expressing wild-type FH or PTEN C211S phenocopies an AKT inhibitor in suppressing tumor growth and sensitizing PRCC2 to sunitinib. Analysis of clinical specimens indicates that PTEN C211 succination levels are positively correlated with AKT activation in PRCC2. Collectively, these findings elucidate a non-metabolic, oncogenic role of fumarate in PRCC2 via direct post-translational modification of PTEN and further reveal potential stratification strategies for patients with FH loss by combinatorial AKTi and sunitinib therapy.
    Keywords:  FH deficiency; PI3K/AKT; PRCC2; PTEN; TKI resistance; fumarate; succination; therapeutic resistance; tumorigenesis; type-2 papillary renal cell carcinoma
    DOI:  https://doi.org/10.1016/j.molcel.2022.01.029
  25. JCI Insight. 2022 02 22. pii: e155836. [Epub ahead of print]7(4):
      Peroxisomes are specialized cellular organelles involved in a variety of metabolic processes. In humans, mutations leading to complete loss of peroxisomes cause multiorgan failure (Zellweger's spectrum disorders, ZSD), including renal impairment. However, the (patho)physiological role of peroxisomes in the kidney remains unknown. We addressed the role of peroxisomes in renal function in mice with conditional ablation of peroxisomal biogenesis in the renal tubule (cKO mice). Functional analyses did not reveal any overt kidney phenotype in cKO mice. However, infant male cKO mice had lower body and kidney weights, and adult male cKO mice exhibited substantial reductions in kidney weight and kidney weight/body weight ratio. Stereological analysis showed an increase in mitochondria density in proximal tubule cells of cKO mice. Integrated transcriptome and metabolome analyses revealed profound reprogramming of a number of metabolic pathways, including metabolism of glutathione and biosynthesis/biotransformation of several major classes of lipids. Although this analysis suggested compensated oxidative stress, challenge with high-fat feeding did not induce significant renal impairments in cKO mice. We demonstrate that renal tubular peroxisomes are dispensable for normal renal function. Our data also suggest that renal impairments in patients with ZSD are of extrarenal origin.
    Keywords:  Genetic diseases; Nephrology
    DOI:  https://doi.org/10.1172/jci.insight.155836
  26. Cell Rep. 2022 Feb 22. pii: S2211-1247(22)00141-3. [Epub ahead of print]38(8): 110417
      Androgen receptor (AR) signaling is the central driver of prostate cancer across disease states. While androgen deprivation therapy (ADT) is effective in the initial treatment of prostate cancer, resistance to ADT or to next-generation androgen pathway inhibitors invariably arises, most commonly through the re-activation of the AR axis. Thus, orthogonal approaches to inhibit AR signaling in advanced prostate cancer are essential. Here, via genome-scale CRISPR-Cas9 screening, we identify protein arginine methyltransferase 1 (PRMT1) as a critical mediator of AR expression and signaling. PRMT1 regulates the recruitment of AR to genomic target sites and the inhibition of PRMT1 impairs AR binding at lineage-specific enhancers, leading to decreased expression of key oncogenes, including AR itself. In addition, AR-driven prostate cancer cells are uniquely susceptible to combined AR and PRMT1 inhibition. Our findings implicate PRMT1 as a key regulator of AR output and provide a preclinical framework for co-targeting of AR and PRMT1 in advanced prostate cancer.
    Keywords:  CRISPR screen; PRMT1; androgen receptor; prostate cancer; splicing; superenhancer; transcription
    DOI:  https://doi.org/10.1016/j.celrep.2022.110417
  27. Cancers (Basel). 2022 Feb 15. pii: 963. [Epub ahead of print]14(4):
      An elevated neutrophil-lymphocyte ratio negatively predicts the outcome of patients with cancer and is associated with cachexia, the terminal wasting syndrome. Here, using murine model systems of colorectal and pancreatic cancer we show that neutrophilia in the circulation and multiple organs, accompanied by extramedullary hematopoiesis, is an early event during cancer progression. Transcriptomic and metabolic assessment reveals that neutrophils in tumor-bearing animals utilize aerobic glycolysis, similar to cancer cells. Although pharmacological inhibition of aerobic glycolysis slows down tumor growth in C26 tumor-bearing mice, it precipitates cachexia, thereby shortening the overall survival. This negative effect may be explained by our observation that acute depletion of neutrophils in pre-cachectic mice impairs systemic glucose homeostasis secondary to altered hepatic lipid processing. Thus, changes in neutrophil number, distribution, and metabolism play an adaptive role in host metabolic homeostasis during cancer progression. Our findings provide insight into early events during cancer progression to cachexia, with implications for therapy.
    Keywords:  aerobic glycolysis; cachexia; cancer; host; metabolism; neutrophils
    DOI:  https://doi.org/10.3390/cancers14040963
  28. Antioxidants (Basel). 2022 Jan 28. pii: 262. [Epub ahead of print]11(2):
      The evolutionary conserved non-heme Fe-containing protein pirin has been implicated as an important factor in cell proliferation, migration, invasion, and tumour progression of melanoma, breast, lung, cervical, prostate, and oral cancers. Here we found that pirin is overexpressed in human colorectal cancer in comparison with matched normal tissue. The overexpression of pirin correlates with activation of transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) and increased expression of the classical Nrf2 target NAD(P)H:quinone oxidoreductase 1 (NQO1), but interestingly and unexpectedly, not with expression of the aldo-keto reductase (AKR) family members AKR1B10 and AKR1C1, which are considered to be the most overexpressed genes in response to Nrf2 activation in humans. Using pharmacologic and genetic approaches to either downregulate or upregulate Nrf2, we show that pirin is regulated by Nrf2 in human and mouse cells and in the mouse colon in vivo. The small molecule pirin inhibitor TPhA decreased the viability of human colorectal cancer (DLD1) cells, but this decrease was independent of the levels of pirin. Our study demonstrates the Nrf2-dependent regulation of pirin and encourages the pursuit for specific pirin inhibitors.
    Keywords:  AKR1B10; AKR1C1; DLD1; NQO1; Nrf2; colorectal cancer; pirin
    DOI:  https://doi.org/10.3390/antiox11020262
  29. EMBO J. 2022 Feb 25. e108272
      Most cancer deaths result from progression of therapy resistant disease, yet our understanding of this phenotype is limited. Cancer therapies generate stress signals that act upon mitochondria to initiate apoptosis. Mitochondria isolated from neuroblastoma cells were exposed to tBid or Bim, death effectors activated by therapeutic stress. Multidrug-resistant tumor cells obtained from children at relapse had markedly attenuated Bak and Bax oligomerization and cytochrome c release (surrogates for apoptotic commitment) in comparison with patient-matched tumor cells obtained at diagnosis. Electron microscopy identified reduced ER-mitochondria-associated membranes (MAMs; ER-mitochondria contacts, ERMCs) in therapy-resistant cells, and genetically or biochemically reducing MAMs in therapy-sensitive tumors phenocopied resistance. MAMs serve as platforms to transfer Ca2+ and bioactive lipids to mitochondria. Reduced Ca2+ transfer was found in some but not all resistant cells, and inhibiting transfer did not attenuate apoptotic signaling. In contrast, reduced ceramide synthesis and transfer was common to resistant cells and its inhibition induced stress resistance. We identify ER-mitochondria-associated membranes as physiologic regulators of apoptosis via ceramide transfer and uncover a previously unrecognized mechanism for cancer multidrug resistance.
    Keywords:  ceramides; inter-organelle contacts; mitochondria-associated membranes; multidrug resistance; sphingolipids
    DOI:  https://doi.org/10.15252/embj.2021108272
  30. J Clin Invest. 2022 Feb 22. pii: e153247. [Epub ahead of print]
      CD8+ T cell longevity regulated by metabolic activity plays important roles in cancer immunotherapy. Although in vitro polarized, transferred IL-9-secreting CD8+ Tc9 cells exert greater persistence and antitumor efficacy than Tc1/CTL cells, the underlying mechanism remains unclear. Here, we show that tumor-infiltrating Tc9 cells display significantly lower lipid peroxidation than Tc1 cells in several mouse models, which is strongly correlated with their persistence. Using RNA-sequence and functional validation, we found that Tc9 cells exhibited unique lipid metabolic programs. Tc9 cell-derived IL-9 activated STAT3, upregulated fatty acid oxidation and mitochondrial activity, and rendered Tc9 cells with reduced lipid peroxidation and resistant to tumor or ROS induced ferroptosis in TME. IL-9 signal deficiency, inhibiting STAT3 or fatty acid oxidation increased lipid peroxidation and ferroptosis of Tc9 cells, resulting in impaired longevity and antitumor ability. Similarly, human Tc9 cells also possessed lower lipid peroxidation than Tc1 cells and tumor-infiltrating CD8+ T cells expressed lower IL-9 and higher lipid peroxidation- and ferroptosis-related genes than circulating CD8+ T cells in melanoma patients. This study indicates that lipid peroxidation regulates Tc9-cell longevity and antitumor effects via IL-9-STAT3-fatty acid oxidation pathway and regulating T-cell lipid peroxidation can be used to enhance T-cell based immunotherapy in human cancer.
    Keywords:  Cancer immunotherapy; Fatty acid oxidation; Immunology; Metabolism; T cells
    DOI:  https://doi.org/10.1172/JCI153247
  31. Cancer Cell. 2022 Feb 15. pii: S1535-6108(22)00036-8. [Epub ahead of print]
      Tumor cell intrinsic ferroptosis-initiating mechanisms are unknown. Here, we discover that T cell-derived interferon (IFN)γ in combination with arachidonic acid (AA) induces immunogenic tumor ferroptosis, serving as a mode of action for CD8+ T cell (CTL)-mediated tumor killing. Mechanistically, IFNγ stimulates ACSL4 and alters tumor cell lipid pattern, thereby increasing incorporations of AA into C16 and C18 acyl chain-containing phospholipids. Palmitoleic acid and oleic acid, two common C16 and C18 fatty acids in blood, promote ACSL4-dependent tumor ferroptosis induced by IFNγ plus AA. Moreover, tumor ACSL4 deficiency accelerates tumor progression. Low-dose AA enhances tumor ferroptosis and elevates spontaneous and immune checkpoint blockade (ICB)-induced anti-tumor immunity. Clinically, tumor ACSL4 correlates with T cell signatures and improved survival in ICB-treated cancer patients. Thus, IFNγ signaling paired with selective fatty acids is a natural tumor ferroptosis-promoting mechanism and a mode of action of CTLs. Targeting the ACSL4 pathway is a potential anti-cancer approach.
    Keywords:  ACSL4; PD-L1; T cell; arachidonic acid; cancer; ferroptosis; immunotherapy; interferon; oleic acid; palmitoleic acid
    DOI:  https://doi.org/10.1016/j.ccell.2022.02.003
  32. Nat Rev Mol Cell Biol. 2022 Feb 21.
      'Reactive oxygen species' (ROS) is a generic term that defines a wide variety of oxidant molecules with vastly different properties and biological functions that range from signalling to causing cell damage. Consequently, the description of oxidants needs to be chemically precise to translate research on their biological effects into therapeutic benefit in redox medicine. This Expert Recommendation article pinpoints key issues associated with identifying the physiological roles of oxidants, focusing on H2O2 and O2.-. The generic term ROS should not be used to describe specific molecular agents. We also advocate for greater precision in measurement of H2O2, O2.- and other oxidants, along with more specific identification of their signalling targets. Future work should also consider inter-organellar communication and the interactions of redox-sensitive signalling targets within organs and whole organisms, including the contribution of environmental exposures. To achieve these goals, development of tools that enable site-specific and real-time detection and quantification of individual oxidants in cells and model organisms are needed. We also stress that physiological O2 levels should be maintained in cell culture to better mimic in vivo redox reactions associated with specific cell types. Use of precise definitions and analytical tools will help harmonize research among the many scientific disciplines working on the common goal of understanding redox biology.
    DOI:  https://doi.org/10.1038/s41580-022-00456-z
  33. Nature. 2022 Feb 23.
      The assembly of neural circuits is dependent on precise spatiotemporal expression of cell recognition molecules1-5. Factors controlling cell type specificity have been identified6-8, but how timing is determined remains unknown. Here we describe induction of a cascade of transcription factors by a steroid hormone (ecdysone) in all fly visual system neurons spanning target recognition and synaptogenesis. We demonstrate through single-cell sequencing that the ecdysone pathway regulates the expression of a common set of targets required for synaptic maturation and cell-type-specific targets enriched for cell-surface proteins regulating wiring specificity. Transcription factors in the cascade regulate the expression of the same wiring genes in complex ways, including activation in one cell type and repression in another. We show that disruption of the ecdysone pathway generates specific defects in dendritic and axonal processes and synaptic connectivity, with the order of transcription factor expression correlating with sequential steps in wiring. We also identify shared targets of a cell-type-specific transcription factor and the ecdysone pathway that regulate specificity. We propose that neurons integrate a global temporal transcriptional module with cell-type-specific transcription factors to generate different cell-type-specific patterns of cell recognition molecules regulating wiring.
    DOI:  https://doi.org/10.1038/s41586-022-04418-5