bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2022–10–02
sixty-two papers selected by
Christian Frezza, Universität zu Köln



  1. Nature. 2022 Sep 28.
      CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.
    DOI:  https://doi.org/10.1038/s41586-022-05264-1
  2. Sci Adv. 2022 Sep 30. 8(39): eabq0117
      The fate of pyruvate is a defining feature in many cell types. One major fate is mitochondrial entry via the mitochondrial pyruvate carrier (MPC). We found that diffuse large B cell lymphomas (DLBCLs) consume mitochondrial pyruvate via glutamate-pyruvate transaminase 2 to enable α-ketoglutarate production as part of glutaminolysis. This led us to discover that glutamine exceeds pyruvate as a carbon source for the tricarboxylic acid cycle in DLBCLs. As a result, MPC inhibition led to decreased glutaminolysis in DLBCLs, opposite to previous observations in other cell types. We also found that MPC inhibition or genetic depletion decreased DLBCL proliferation in an extracellular matrix (ECM)-like environment and xenografts, but not in a suspension environment. Moreover, the metabolic profile of DLBCL cells in ECM is markedly different from cells in a suspension environment. Thus, we conclude that the synergistic consumption and assimilation of glutamine and pyruvate enables DLBCL proliferation in an extracellular environment-dependent manner.
    DOI:  https://doi.org/10.1126/sciadv.abq0117
  3. Science. 2022 Sep 30. 377(6614): 1519-1529
      Gain-of-function mutations in isocitrate dehydrogenase (IDH) in human cancers result in the production of d-2-hydroxyglutarate (d-2HG), an oncometabolite that promotes tumorigenesis through epigenetic alterations. The cancer cell-intrinsic effects of d-2HG are well understood, but its tumor cell-nonautonomous roles remain poorly explored. We compared the oncometabolite d-2HG with its enantiomer, l-2HG, and found that tumor-derived d-2HG was taken up by CD8+ T cells and altered their metabolism and antitumor functions in an acute and reversible fashion. We identified the glycolytic enzyme lactate dehydrogenase (LDH) as a molecular target of d-2HG. d-2HG and inhibition of LDH drive a metabolic program and immune CD8+ T cell signature marked by decreased cytotoxicity and impaired interferon-γ signaling that was recapitulated in clinical samples from human patients with IDH1 mutant gliomas.
    DOI:  https://doi.org/10.1126/science.abj5104
  4. Aging Cell. 2022 Sep 27. e13725
      Branched-chain amino acid (BCAA) metabolism is a central hub for energy production and regulation of numerous physiological processes. Controversially, both increased and decreased levels of BCAAs are associated with longevity. Using genetics and multi-omics analyses in Caenorhabditis elegans, we identified adaptive regulation of the ubiquitin-proteasome system (UPS) in response to defective BCAA catabolic reactions after the initial transamination step. Worms with impaired BCAA metabolism show a slower turnover of a GFP-based proteasome substrate, which is suppressed by loss-of-function of the first BCAA catabolic enzyme, the branched-chain aminotransferase BCAT-1. The exogenous supply of BCAA-derived carboxylic acids, which are known to accumulate in the body fluid of patients with BCAA metabolic disorders, is sufficient to regulate the UPS. The link between BCAA intermediates and UPS function presented here sheds light on the unexplained role of BCAAs in the aging process and opens future possibilities for therapeutic interventions.
    Keywords:   Caenorhabditis elegans ; aging; branched-chain amino acid; branched-chain aminotransferase; metabolism; proteasome; proteostasis; ubiquitin
    DOI:  https://doi.org/10.1111/acel.13725
  5. Cell Rep. 2022 Sep 27. pii: S2211-1247(22)01256-6. [Epub ahead of print]40(13): 111415
      Sphingolipids play important signaling and structural roles in cells. Here, we find that during de novo sphingolipid biosynthesis, a toxic metabolite is formed with critical implications for cancer cell survival. The enzyme catalyzing the first step in this pathway, serine palmitoyltransferase complex (SPT), is upregulated in breast and other cancers. SPT is dispensable for cancer cell proliferation, as sphingolipids can be salvaged from the environment. However, SPT activity introduces a liability as its product, 3-ketodihydrosphingosine (3KDS), is toxic and requires clearance via the downstream enzyme 3-ketodihydrosphingosine reductase (KDSR). In cancer cells, but not normal cells, targeting KDSR induces toxic 3KDS accumulation leading to endoplasmic reticulum (ER) dysfunction and loss of proteostasis. Furthermore, the antitumor effect of KDSR disruption can be enhanced by increasing metabolic input (via high-fat diet) to allow greater 3KDS production. Thus, de novo sphingolipid biosynthesis entails a detoxification requirement in cancer cells that can be therapeutically exploited.
    Keywords:  CP: Cancer; CP: Metabolism; cancer metabolism; cancer therapy; endoplasmic reticulum; ketodihydrosphingosine reductase; serine palmitoyltransferase
    DOI:  https://doi.org/10.1016/j.celrep.2022.111415
  6. Cancer Res. 2022 Sep 26. pii: CAN-22-1039. [Epub ahead of print]
      Autophagy is a conserved catabolic process that maintains cellular homeostasis. Autophagy supports lung tumorigenesis and is a potential therapeutic target in lung cancer. A better understanding of the importance of tumor cell-autonomous versus systemic autophagy in lung cancer could facilitate clinical translation of autophagy inhibition. Here, we exploited inducible expression of Atg5 shRNA to temporally control Atg5 levels and generate reversible tumor-specific and systemic autophagy loss mouse models of KrasG12D/+;p53-/- (KP) non-small cell lung cancer (NSCLC). Transient suppression of systemic but not tumor Atg5 expression significantly reduced established KP lung tumor growth without damaging normal tissues. In vivo 13C isotope tracing and metabolic flux analyses demonstrated that systemic Atg5 knockdown specifically led to reduced glucose and lactate uptake. As a result, carbon flux from glucose and lactate to major metabolic pathways, including the tricarboxylic acid cycle, glycolysis, and serine biosynthesis, was significantly reduced in KP NSCLC following systemic autophagy loss. Furthermore, systemic Atg5 knockdown increased tumor T cell infiltration, leading to T cell-mediated tumor killing. Importantly, intermittent transient systemic Atg5 knockdown, which resembles what would occur during autophagy inhibition for cancer therapy, significantly prolonged lifespan of KP lung tumor-bearing mice, resulting in recovery of normal tissues but not tumors. Thus, systemic autophagy supports the growth of established lung tumors by promoting immune evasion and sustaining cancer cell metabolism for energy production and biosynthesis, and the inability of tumors to recover from loss of autophagy provides further proof of concept that inhibition of autophagy is a valid approach to cancer therapy.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-22-1039
  7. Methods Mol Biol. 2023 ;2554 1-10
      Protein-metabolite interactions regulate many important cellular processes but still remain understudied. Recent technological advancements are gradually uncovering the complexity of the protein-metabolite interactome. Here, we highlight some classic and recent examples of how protein metabolite interactions regulate metabolism, both locally and globally, and how this contributes to cellular physiology. We also discuss the importance of these interactions in diseases such as cancer.
    Keywords:  Allosteric regulation; Interactome; Metabolic disease; Metabolic regulation; Metabolism; PMI; Protein–metabolite interactions; Signaling; Small molecule regulators
    DOI:  https://doi.org/10.1007/978-1-0716-2624-5_1
  8. Nat Commun. 2022 Sep 28. 13(1): 5696
      Fatty liver is a highly heterogenous condition driven by various pathogenic factors in addition to the severity of steatosis. Protein insufficiency has been causally linked to fatty liver with incompletely defined mechanisms. Here we report that fatty liver is a sulfur amino acid insufficient state that promotes metabolic inflexibility via limiting coenzyme A availability. We demonstrate that the nutrient-sensing transcriptional factor EB synergistically stimulates lysosome proteolysis and methionine adenosyltransferase to increase cysteine pool that drives the production of coenzyme A and glutathione, which support metabolic adaptation and antioxidant defense during increased lipid influx. Intriguingly, mice consuming an isocaloric protein-deficient Western diet exhibit selective hepatic cysteine, coenzyme A and glutathione deficiency and acylcarnitine accumulation, which are reversed by cystine supplementation without normalizing dietary protein intake. These findings support a pathogenic link of dysregulated sulfur amino acid metabolism to metabolic inflexibility that underlies both overnutrition and protein malnutrition-associated fatty liver development.
    DOI:  https://doi.org/10.1038/s41467-022-33465-9
  9. Cell Rep. 2022 Sep 27. pii: S2211-1247(22)01174-3. [Epub ahead of print]40(13): 111346
      Mast cells (MCs) are granulated cells implicated in inflammatory disorders because of their capacity to degranulate, releasing prestored proinflammatory mediators. As MCs have the unique capacity to reform granules following degranulation in vitro, their potential to regranulate in vivo is linked to their pathogenesis. It is not known what factors regulate regranulation, let alone if regranulation occurs in vivo. We report that mice can undergo multiple bouts of MC regranulation following successive anaphylactic reactions. mTORC1, a nutrient sensor that activates protein and lipid synthesis, is necessary for regranulation. mTORC1 activity is regulated by a glucose-6-phosphate transporter, Slc37a2, which increases intracellular glucose-6-phosphate and ATP during regranulation, two upstream signals of mTOR. Additionally, Slc37a2 concentrates extracellular metabolites within endosomes, which are trafficked into nascent granules. Thus, the metabolic switch associated with MC regranulation is mediated by the interactions of a cellular metabolic sensor and a transporter of extracellular metabolites into MC granules.
    Keywords:  CP: Metabolism; Slc37a2; mTOR; mast cell; metabolism; regranulation
    DOI:  https://doi.org/10.1016/j.celrep.2022.111346
  10. Elife. 2022 Sep 26. pii: e80919. [Epub ahead of print]11
      Mitochondrial electron transport chain (ETC) dysfunction due to mutations in the nuclear or mitochondrial genome is a common cause of metabolic disease in humans and displays striking tissue specificity depending on the affected gene. The mechanisms underlying tissue specific phenotypes are not understood. Complex I (cI) is classically considered the entry point for electrons into the ETC, and in vitro experiments indicate that cI is required for basal respiration and maintenance of the NAD+/NADH ratio, an indicator of cellular redox status. This finding has largely not been tested in vivo. Here, we report that mitochondrial complex I is dispensable for homeostasis of the adult mouse liver; animals with hepatocyte-specific loss of cI function display no overt phenotypes or signs of liver damage, and maintain liver function, redox and oxygen status. Further analysis of cI-deficient livers did not reveal significant proteomic or metabolic changes, indicating little to no compensation is required in the setting of complex I loss. In contrast, complex IV (cIV) dysfunction in adult hepatocytes results in decreased liver function, impaired oxygen handling, steatosis, and liver damage, accompanied by significant metabolomic and proteomic perturbations. Our results support a model whereby complex I loss is tolerated in the mouse liver because hepatocytes use alternative electron donors to fuel the mitochondrial ETC.
    Keywords:  cell biology; genetics; genomics; mouse
    DOI:  https://doi.org/10.7554/eLife.80919
  11. Nat Commun. 2022 Sep 30. 13(1): 5747
      Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer in adults. When ccRCC is localized to the kidney, surgical resection or ablation of the tumor is often curative. However, in the metastatic setting, ccRCC remains a highly lethal disease. Here we use fresh patient samples that include treatment-naive primary tumor tissue, matched adjacent normal kidney tissue, as well as tumor samples collected from patients with bone metastases. Single-cell transcriptomic analysis of tumor cells from the primary tumors reveals a distinct transcriptional signature that is predictive of metastatic potential and patient survival. Analysis of supporting stromal cells within the tumor environment demonstrates vascular remodeling within the endothelial cells. An in silico cell-to-cell interaction analysis highlights the CXCL9/CXCL10-CXCR3 axis and the CD70-CD27 axis as potential therapeutic targets. Our findings provide biological insights into the interplay between tumor cells and the ccRCC microenvironment.
    DOI:  https://doi.org/10.1038/s41467-022-33375-w
  12. Ann Oncol. 2022 Sep 23. pii: S0923-7534(22)04148-5. [Epub ahead of print]
       BACKGROUND: Seemingly normal tissues progressively become populated by mutant clones over time. Most of these clones bear mutations in well-known cancer genes but only rarely do they transform into cancer. This poses questions on what triggers cancer initiation and what implications somatic variation has for cancer early detection.
    DESIGN: We analysed recent mutational screens of healthy and cancer-free diseased tissues to compare somatic drivers and the causes of somatic variation across tissues. We then reviewed the mechanisms of clonal expansion and their relationships with age and diseases other than cancer. We finally discussed the relevance of somatic variation for cancer initiation and how it can help or hinder cancer detection and prevention.
    RESULTS: The extent of somatic variation is highly variable across tissues and depends on intrinsic features, such as tissue architecture and turnover, as well as the exposure to endogenous and exogenous insults. Most somatic mutations driving clonal expansion are tissue-specific and inactivate tumor suppressor genes involved in chromatin modification and cell growth signaling. Some of these genes are more frequently mutated in normal tissues than cancer, indicating a context-dependent cancer promoting or protective role. Mutant clones can persist over a long time or disappear rapidly, suggesting that their fitness depends on the dynamic equilibrium with the environment. The disruption of this equilibrium is likely responsible for their transformation into malignant clones and knowing what triggers this process is key for cancer prevention and early detection. Somatic variation should be considered in liquid biopsy, where it may contribute cancer-independent mutations, and in the identification of cancer drivers, since not all mutated genes favoring clonal expansion also drive tumorigenesis.
    CONCLUSIONS: Somatic variation and the factors governing homeostasis of normal tissues should be taken into account when devising strategies for cancer prevention and early detection.
    Keywords:  Somatic evolution; cancer early detection; cancer initiation; clone selection; driver gene; healthy tissues
    DOI:  https://doi.org/10.1016/j.annonc.2022.09.156
  13. Cell Death Dis. 2022 Sep 26. 13(9): 822
      Human sideroflexin 2 (SFXN2) belongs to the SFXN protein family, which is a mitochondrial outer membrane protein involved in mitochondrial iron metabolism. Mitochondria are indispensable for cellular energy production and iron metabolism. However, it remains elusive how SFXN2 modulates mitochondrial homeostasis and cellular iron metabolism in multiple myeloma (MM). In this study, we first found that SFXN2 was significantly elevated and correlated to poor outcomes in MM patients from clinical datasets. SFXN2 overexpression promoted MM cell proliferation and suppressed starvation-induced autophagy/mitophagy, while SFXN2 knockdown aggravated mitochondria damage and autophagic processes in ARP1 and H929 MM cell lines. Furthermore, inhibition of SFXN2 exerted effectively anti-myeloma activity in vivo by using myeloma xenograft model. Mechanism studies indicated that heme oxygenase 1 (HO1) with anti-oxidant function contributed to the process of autophagy suppression and cellular proliferation mediated by SFXN2. Our study revealed the critical role of SFXN2 in regulating mitochondrial bioenergetics, mitophagy, cellular iron metabolism, and redox homeostasis in interconnected and intricate way. Collectively, these findings not only provide insights into the metabolic reprogramming of tumor cells, but also highlight the therapeutic potential of SFXN2 in combination with iron metabolism as target for prognosis and treatment in MM patients.
    DOI:  https://doi.org/10.1038/s41419-022-05272-z
  14. iScience. 2022 Oct 21. 25(10): 105086
      Endothelial cell (EC) metabolism has emerged as a driver of angiogenesis. While hypoxia inactivates the oxygen sensors prolyl-4 hydroxylase domain-containing proteins 1-3 (PHD1-3) and stimulates angiogenesis, the effects of PHDs on EC functions remain poorly defined. Here, we investigated the impact of chemical PHD inhibition by dimethyloxalylglycine (DMOG) on angiogenic competence and metabolism of human vascular ECs. DMOG reduced EC proliferation, migration, and tube formation capacities, responses that were associated with an unfavorable metabolic reprogramming. While glycolytic genes were induced, multiple genes encoding sub-units of mitochondrial complex I were suppressed with concurrent decline in nicotinamide adenine dinucleotide (NAD+) levels. Importantly, the DMOG-induced defects in EC migration could be partially rescued by augmenting NAD+ levels through nicotinamide riboside or citrate supplementation. In summary, by integrating functional assays, transcriptomics, and metabolomics, we provide insights into the effects of PHD inhibition on angiogenic competence and metabolism of human vascular ECs.
    Keywords:  Biological sciences; Metabolomics; Transcriptomics
    DOI:  https://doi.org/10.1016/j.isci.2022.105086
  15. Trends Cancer. 2022 Sep 21. pii: S2405-8033(22)00195-9. [Epub ahead of print]
      To thrive in a hypoxic and nutrient-limited tumor microenvironment, pancreatic ductal adenocarcinoma (PDAC) cells rewire their metabolism. Understanding PDAC cell metabolism may uncover vulnerabilities that can be targeted for improved therapy. Three recent studies find that the PDAC tumor microenvironment modulates the functional consequences of depleting the mitochondrially localized aspartate transaminase GOT2, thus providing new insights into the metabolism of this lethal cancer.
    DOI:  https://doi.org/10.1016/j.trecan.2022.09.004
  16. Nat Commun. 2022 Sep 30. 13(1): 5750
      Canonical RNA processing in mammalian mitochondria is defined by tRNAs acting as recognition sites for nucleases to release flanking transcripts. The relevant factors, their structures, and mechanism are well described, but not all mitochondrial transcripts are punctuated by tRNAs, and their mode of processing has remained unsolved. Using Drosophila and mouse models, we demonstrate that non-canonical processing results in the formation of 3' phosphates, and that phosphatase activity by the carbon catabolite repressor 4 domain-containing family member ANGEL2 is required for their hydrolysis. Furthermore, our data suggest that members of the FAST kinase domain-containing protein family are responsible for these 3' phosphates. Our results therefore propose a mechanism for non-canonical RNA processing in metazoan mitochondria, by identifying the role of ANGEL2.
    DOI:  https://doi.org/10.1038/s41467-022-33368-9
  17. Biochemistry (Mosc). 2022 Aug;87(8): 683-688
      The conclusions made in the three papers published in Function by Juhaszova et al. [Function, 3, 2022, zqab065, zqac001, zqac018], can be seen as a breakthrough in bioenergetics and mitochondrial medicine. For more than half a century, it has been believed that mitochondrial energetics is solely protonic and is based on the generation of electrochemical potential of hydrogen ions across the inner mitochondrial membrane upon oxidation of respiratory substrates, resulting in the generation of ATP via reverse transport of protons through the ATP synthase complex. Juhaszova et al. demonstrated that ATP synthase transfers not only protons, but also potassium ions, with the generation of ATP. This mechanism seems logical, given the fact that in eukaryotic cells, the concentration of potassium ions is several million times higher than the concentration of protons. The transport of K+ through the ATP synthase was enhanced by the activators of mitochondrial ATP-dependent K+ channel (mK/ATP), leading to the conclusion that ATP synthase is the material essence of mK/ATP. Beside ATP generation, the transport of osmotically active K+ to the mitochondrial matrix is accompanied by water entry to the matrix, leading to an increase in the matrix volume and activation of mitochondrial respiration with the corresponding increase in the ATP synthesis, which suggests an advantage of such transport for energy production. The driving force for K+ transport into the mitochondria is the membrane potential; an excess of K+ is exported from the matrix by the hypothetical K+/H+ exchangers. Inhibitory factor 1 (IF1) plays an important role in the activation of mK/ATP by increasing the chemo-mechanical efficiency of ATP synthase, which may be a positive factor in the protective anti-ischemic signaling.
    Keywords:  ATP synthase; bioenergetics; ischemia; membrane potential; mitochondria; mitochondrial ATP-dependent potassium channel; potassium ions; protons; rotation; transport
    DOI:  https://doi.org/10.1134/S0006297922080016
  18. Front Cell Dev Biol. 2022 ;10 918691
      Endoplasmic reticulum (ER) functions critically depend on a suitable ATP supply to fuel ER chaperons and protein trafficking. A disruption of the ability of the ER to traffic and fold proteins leads to ER stress and the unfolded protein response (UPR). Using structured illumination super-resolution microscopy, we revealed increased stability and lifetime of mitochondrial associated ER membranes (MAM) during ER stress. The consequent increase of basal mitochondrial Ca2+ leads to increased TCA cycle activity and enhanced mitochondrial membrane potential, OXPHOS, and ATP generation during ER stress. Subsequently, OXPHOS derived ATP trafficking towards the ER was increased. We found that the increased lifetime and stability of MAMs during ER stress depended on the mitochondrial fusion protein Mitofusin2 (MFN2). Knockdown of MFN2 blunted mitochondrial Ca2+ effect during ER stress, switched mitochondrial F1FO-ATPase activity into reverse mode, and strongly reduced the ATP supply for the ER during ER stress. These findings suggest a critical role of MFN2-dependent MAM stability and lifetime during ER stress to compensate UPR by strengthening ER ATP supply by the mitochondria.
    Keywords:  ER stress; mitochondria; mitochondria-associated membranes (MAM); mitochondrial Ca2+; mitofusin 2
    DOI:  https://doi.org/10.3389/fcell.2022.918691
  19. Front Cell Dev Biol. 2022 ;10 984245
      Mitochondria are the primary sites for cellular energy production and are required for many essential cellular processes. Mitochondrial DNA (mtDNA) is a 16.6 kb circular DNA molecule that encodes only 13 gene products of the approximately 90 different proteins of the respiratory chain complexes and an estimated 1,200 mitochondrial proteins. MtDNA is, however, crucial for organismal development, normal function, and survival. MtDNA maintenance requires mitochondrially targeted nuclear DNA repair enzymes, a mtDNA replisome that is unique to mitochondria, and systems that control mitochondrial morphology and quality control. Here, we provide an overview of the current literature on mtDNA repair and transcription machineries and discuss how dynamic functional interactions between the components of these systems regulate mtDNA maintenance and transcription. A profound understanding of the molecular mechanisms that control mtDNA maintenance and transcription is important as loss of mtDNA integrity is implicated in normal process of aging, inflammation, and the etiology and pathogenesis of a number of diseases.
    Keywords:  DNA repair; base excision repair (BER); base excision repair (BER)glycosylases; mitochdrial damage; mitochondria; transcription
    DOI:  https://doi.org/10.3389/fcell.2022.984245
  20. Front Immunol. 2022 ;13 918747
      Macrophages are innate immune cells with high phenotypic plasticity. Depending on the microenvironmental cues they receive, they polarize on a spectrum with extremes being pro- or anti-inflammatory. As well as responses to microenvironmental cues, cellular metabolism is increasingly recognized as a key factor influencing macrophage function. While pro-inflammatory macrophages mostly use glycolysis to meet their energetic needs, anti-inflammatory macrophages heavily rely on mitochondrial respiration. The relationship between macrophage phenotype and macrophage metabolism is well established, however its precise directionality is still under question. Indeed, whether cellular metabolism per se influences macrophage phenotype or whether macrophage polarization dictates metabolic activity is an area of active research. In this short perspective article, we sought to shed light on this area. By modulating several metabolic pathways in bone marrow-derived macrophages, we show that disruption of cellular metabolism does per se influence cytokine secretion profile and expression of key inflammatory genes. Only some pathways seem to be involved in these processes, highlighting the need for specific metabolic functions in the regulation of macrophage phenotype. We thus demonstrate that the intact nature of cellular metabolism influences macrophage phenotype and function, addressing the directionality between these two aspects of macrophage biology.
    Keywords:  Inflammation; energetics; macrophage; metabolism; mitochondria
    DOI:  https://doi.org/10.3389/fimmu.2022.918747
  21. Cell Rep. 2022 Sep 27. pii: S2211-1247(22)01253-0. [Epub ahead of print]40(13): 111412
      Cyclic AMP (cAMP) signaling is localized to multiple spatially distinct microdomains, but the role of cAMP microdomains in cancer cell biology is poorly understood. Here, we present a tunable genetic system that allows us to activate cAMP signaling in specific microdomains. We uncover a nuclear cAMP microdomain that activates a tumor-suppressive pathway in a broad range of cancers by inhibiting YAP, a key effector protein of the Hippo pathway, inside the nucleus. We show that nuclear cAMP induces a LATS-dependent pathway leading to phosphorylation of nuclear YAP solely at serine 397 and export of YAP from the nucleus with no change in YAP protein stability. Thus, nuclear cAMP inhibition of nuclear YAP is distinct from other known mechanisms of Hippo regulation. Pharmacologic targeting of specific cAMP microdomains remains an untapped therapeutic approach for cancer; thus, drugs directed at the nuclear cAMP microdomain may provide avenues for the treatment of cancer.
    Keywords:  CP: Molecular biology; Hippo pathway; PKA; YAP; cAMP; nucleus; sAC; tumor suppression
    DOI:  https://doi.org/10.1016/j.celrep.2022.111412
  22. Sci Adv. 2022 Sep 30. 8(39): eabo1123
      Disrupted circadian rhythmicity is a prominent feature of modern society and has been designated as a probable carcinogen by the World Health Organization. However, the biological mechanisms that connect circadian disruption and cancer risk remain largely undefined. We demonstrate that exposure to chronic circadian disruption [chronic jetlag (CJL)] increases tumor burden in a mouse model of KRAS-driven lung cancer. Molecular characterization of tumors and tumor-bearing lung tissues revealed that CJL enhances the expression of heat shock factor 1 (HSF1) target genes. Consistently, exposure to CJL disrupted the highly rhythmic nuclear trafficking of HSF1 in the lung, resulting in an enhanced accumulation of HSF1 in the nucleus. HSF1 has been shown to promote tumorigenesis in other systems, and we find that pharmacological or genetic inhibition of HSF1 reduces the growth of KRAS-mutant human lung cancer cells. These findings implicate HSF1 as a molecular link between circadian disruption and enhanced tumorigenesis.
    DOI:  https://doi.org/10.1126/sciadv.abo1123
  23. Elife. 2022 09 26. pii: e76721. [Epub ahead of print]11
      Chlamydia trachomatis (Ctr) can persist over extended times within their host cell and thereby establish chronic infections. One of the major inducers of chlamydial persistence is interferon-gamma (IFN-γ) released by immune cells as a mechanism of immune defence. IFN-γ activates the catabolic depletion of L-tryptophan (Trp) via indoleamine-2,3-dioxygenase (IDO), resulting in persistent Ctr. Here, we show that IFN-γ induces the downregulation of c-Myc, the key regulator of host cell metabolism, in a STAT1-dependent manner. Expression of c-Myc rescued Ctr from IFN-γ-induced persistence in cell lines and human fallopian tube organoids. Trp concentrations control c-Myc levels most likely via the PI3K-GSK3β axis. Unbiased metabolic analysis revealed that Ctr infection reprograms the host cell tricarboxylic acid (TCA) cycle to support pyrimidine biosynthesis. Addition of TCA cycle intermediates or pyrimidine/purine nucleosides to infected cells rescued Ctr from IFN-γ-induced persistence. Thus, our results challenge the longstanding hypothesis of Trp depletion through IDO as the major mechanism of IFN-γ-induced metabolic immune defence and significantly extends the understanding of the role of IFN-γ as a broad modulator of host cell metabolism.
    Keywords:  Chlamydia trachomatis; c-Myc; infectious disease; interferon-gamma; microbiology; persistence
    DOI:  https://doi.org/10.7554/eLife.76721
  24. Front Mol Neurosci. 2022 ;15 974480
      Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
    Keywords:  mitochondrial bioenergetics; mitochondrial dynamics; mitochondrial import machinery; mitochondrial proteins; mitophagy; mtDNA maintenance; neurological diseases; pathogenesis
    DOI:  https://doi.org/10.3389/fnmol.2022.974480
  25. Science. 2022 Sep 30. 377(6614): 1488-1489
      An oncometabolite blocks T cell killing by inhibiting glycolysis.
    DOI:  https://doi.org/10.1126/science.ade3697
  26. Curr Pharm Des. 2022 Sep 22.
      Colorectal cancer (CRC) is one of the most prevalent cancers globally. Despite recent progress in identifying etiologies and molecular genetics as well as new therapeutic approaches, the clinical outcome of current CRC therapies remains poor. This fact highlights the importance of further understanding of underlying mechanisms involved in colorectal tumor initiation and progression. Abnormal metabolic alterations offer an evolutional advantage for CRC tumor cells and enhance their aggressive phenotype. Therefore, dysregulation of cellular metabolism is intricately associated with colorectal tumorigenesis. This review summarizes recent findings regarding the CRC-related changes in cellular metabolic pathways such as glycolysis, tricarboxylic acid cycle, fatty acid oxidation, and mitochondrial metabolism. We describe the oncogenic signaling pathways associated with metabolic dysregulation during malignant transformation and tumor progression. Given the crucial role of metabolic pathway alterations in pathogenesis of CRC, we provide an overview of novel pharmacological strategies for the treatment of CRC by targeting metabolic and signaling pathways.
    Keywords:  Colorectal cancer; Glucose metabolism; Metabolic pathways; Metabolic reprogramming; Signaling pathways; Targeted therapies; Warburg effect
    DOI:  https://doi.org/10.2174/1381612828666220922111342
  27. Cell Mol Immunol. 2022 Sep 30.
      Serine metabolism is reportedly involved in immune cell functions, but whether and how serine metabolism regulates macrophage polarization remain largely unknown. Here, we show that suppressing serine metabolism, either by inhibiting the activity of the key enzyme phosphoglycerate dehydrogenase in the serine biosynthesis pathway or by exogenous serine and glycine restriction, robustly enhances the polarization of interferon-γ-activated macrophages (M(IFN-γ)) but suppresses that of interleukin-4-activated macrophages (M(IL-4)) both in vitro and in vivo. Mechanistically, serine metabolism deficiency increases the expression of IGF1 by reducing the promoter abundance of S-adenosyl methionine-dependent histone H3 lysine 27 trimethylation. IGF1 then activates the p38-dependent JAK-STAT1 axis to promote M(IFN-γ) polarization and suppress STAT6-mediated M(IL-4) activation. This study reveals a new mechanism by which serine metabolism orchestrates macrophage polarization and suggests the manipulation of serine metabolism as a therapeutic strategy for macrophage-mediated immune diseases.
    Keywords:  IGF1; Macrophage polarization; PHGDH; SAM; Serine metabolism; p38
    DOI:  https://doi.org/10.1038/s41423-022-00925-7
  28. Nat Genet. 2022 Sep 29.
      We identify the sodium leak channel non-selective protein (NALCN) as a key regulator of cancer metastasis and nonmalignant cell dissemination. Among 10,022 human cancers, NALCN loss-of-function mutations were enriched in gastric and colorectal cancers. Deletion of Nalcn from gastric, intestinal or pancreatic adenocarcinomas in mice did not alter tumor incidence, but markedly increased the number of circulating tumor cells (CTCs) and metastases. Treatment of these mice with gadolinium-a NALCN channel blocker-similarly increased CTCs and metastases. Deletion of Nalcn from mice that lacked oncogenic mutations and never developed cancer caused shedding of epithelial cells into the blood at levels equivalent to those seen in tumor-bearing animals. These cells trafficked to distant organs to form normal structures including lung epithelium, and kidney glomeruli and tubules. Thus, NALCN regulates cell shedding from solid tissues independent of cancer, divorcing this process from tumorigenesis and unmasking a potential new target for antimetastatic therapies.
    DOI:  https://doi.org/10.1038/s41588-022-01182-0
  29. Mol Metab. 2022 Sep 20. pii: S2212-8778(22)00174-0. [Epub ahead of print] 101605
       OBJECTIVE: Disturbances in NAD + metabolism have been described as a hallmark for multiple metabolic and age-related diseases, including type 2 diabetes. While alterations in pancreatic β-cell function are critical determinants of whole-body glucose homeostasis, the role of NAD+ metabolism in the endocrine pancreas remains poorly explored. Here, we aimed to evaluate the role of nicotinamide riboside (NR) metabolism in maintaining NAD+ levels and pancreatic β-cell function in pathophysiological conditions.
    METHODS: Whole body and pancreatic β-cell-specific NRK1 knockout (KO) mice were metabolically phenotyped in situations of high-fat feeding and aging. We also analyzed pancreatic β-cell function and gene expression.
    RESULTS: We first demonstrate that NRK1, the essential enzyme for the utilization of NR, is abundantly expressed in pancreatic β-cells. While NR treatment did not alter glucose-stimulated insulin secretion in pancreatic islets from young healthy mice, NRK1 knockout mice displayed glucose intolerance and compromised β-cells response to a glucose challenge upon high-fat feeding or aging. Interestingly, β cells dysfunction stemmed from the functional failure of other organs, such as liver and kidney, and the associated changes in circulating peptides and hormones, as mice lacking NRK1 exclusively in β-cells did not show altered glucose homeostasis.
    CONCLUSIONS: This work unveils a new physiological role for NR metabolism in the maintenance of glucose tolerance and pancreatic β-cell function in high-fat feeding or aging conditions.
    Keywords:  Metabolic disease; NAD(+); Nicotinamide riboside; Nicotinamide riboside kinase 1 (NRK1)
    DOI:  https://doi.org/10.1016/j.molmet.2022.101605
  30. Aging Cell. 2022 Sep 30. e13718
      Riboflavin is an essential cofactor in many enzymatic processes and in the production of flavin adenine dinucleotide (FAD). Here, we report that the partial depletion of riboflavin through knockdown of the C. elegans riboflavin transporter 1 (rft-1) promotes metabolic health by reducing intracellular flavin concentrations. Knockdown of rft-1 significantly increases lifespan in a manner dependent upon AMP-activated protein kinase (AMPK)/aak-2, the mitochondrial unfolded protein response, and FOXO/daf-16. Riboflavin depletion promotes altered energetic and redox states and increases adiposity, independent of lifespan genetic dependencies. Riboflavin-depleted animals also exhibit the activation of caloric restriction reporters without any reduction in caloric intake. Our findings indicate that riboflavin depletion activates an integrated hormetic response that promotes lifespan and healthspan in C. elegans.
    Keywords:   C. elegans ; rft-1 riboflavin transporter ; AMPK; FOXO; UPRmt; dietary restriction; longevity; riboflavin
    DOI:  https://doi.org/10.1111/acel.13718
  31. Elife. 2022 Sep 29. pii: e74690. [Epub ahead of print]11
      Macrophages are a highly adaptive population of innate immune cells. Polarization with IFNγ and LPS into the 'classically activated' M1 macrophage enhances pro-inflammatory and microbicidal responses, important for eradicating bacteria such as Mycobacterium tuberculosis. By contrast, 'alternatively activated' M2 macrophages, polarized with IL-4, oppose bactericidal mechanisms and allow mycobacterial growth. These activation states are accompanied by distinct metabolic profiles, where M1 macrophages favor near exclusive use of glycolysis, whereas M2 macrophages up-regulate oxidative phosphorylation (OXPHOS). Here we demonstrate that activation with IL-4 and IL-13 counterintuitively induces protective innate memory against mycobacterial challenge. In human and murine models, prior activation with IL-4/13 enhances pro-inflammatory cytokine secretion in response to a secondary stimulation with mycobacterial ligands. In our murine model, enhanced killing capacity is also demonstrated. Despite this switch in phenotype, IL-4/13 trained murine macrophages do not demonstrate M1-typical metabolism, instead retaining heightened use of OXPHOS. Moreover, inhibition of OXPHOS with oligomycin, 2-deoxy glucose or BPTES all impeded heightened pro-inflammatory cytokine responses from IL-4/13 trained macrophages. Lastly, this work identifies that IL-10 attenuates protective IL-4/13 training, impeding pro-inflammatory and bactericidal mechanisms. In summary, this work provides new and unexpected insight into alternative macrophage activation states in the context of mycobacterial infection.
    Keywords:  immunology; inflammation; mouse
    DOI:  https://doi.org/10.7554/eLife.74690
  32. Sci Rep. 2022 Sep 26. 12(1): 16028
      Metabolic programming of the innate immune cells known as dendritic cells (DCs) changes in response to different stimuli, influencing their function. While the mechanisms behind increased glycolytic metabolism in response to inflammatory stimuli are well-studied, less is known about the programming of mitochondrial metabolism in DCs. We used lipopolysaccharide (LPS) and interferon-β (IFN-β), which differentially stimulate the use of glycolysis and oxidative phosphorylation (OXPHOS), respectively, to identify factors important for mitochondrial metabolism. We found that the expression of peroxisome proliferator-activated receptor gamma co-activator 1β (PGC-1β), a transcriptional co-activator and known regulator of mitochondrial metabolism, decreases when DCs are activated with LPS, when OXPHOS is diminished, but not with IFN-β, when OXPHOS is maintained. We examined the role of PGC-1β in bioenergetic metabolism of DCs and found that PGC-1β deficiency indeed impairs their mitochondrial respiration. PGC-1β-deficient DCs are more glycolytic compared to controls, likely to compensate for reduced OXPHOS. PGC-1β deficiency also causes decreased capacity for ATP production at steady state and in response to IFN-β treatment. Loss of PGC-1β in DCs leads to increased expression of genes in inflammatory pathways, and reduced expression of genes encoding proteins important for mitochondrial metabolism and function. Collectively, these results demonstrate that PGC-1β is a key regulator of mitochondrial metabolism and negative regulator of inflammatory gene expression in DCs.
    DOI:  https://doi.org/10.1038/s41598-022-20215-6
  33. J Immunother Cancer. 2022 Sep;pii: e002976. [Epub ahead of print]10(9):
      Despite accumulating evidence that supports the beneficial effects of physical exercise in inhibiting cancer progression, whether exercise modulates its effects through systemic and cellular changes in iron metabolism and immune-tumor crosstalk is unknown. Cancer cells have greater metabolic requirements than normal cells, with their survival and proliferation depending largely on iron bioavailability. Although iron is an essential mineral for mitogenesis, it also participates in a form of iron-dependent programmed cell death termed ferroptosis. In this short hypothesis paper, we speculate that modulating iron bioavailability, transport and metabolism with regular exercise can have significant implications for tumor and stromal cells in the tumor microenvironment, by affecting multiple tumor-autonomous and stromal cell responses.
    Keywords:  Cytokines; Macrophages; Metabolic Networks and Pathways; Tumor Biomarkers; Tumor Microenvironment
    DOI:  https://doi.org/10.1136/jitc-2021-002976
  34. J Exp Med. 2022 Dec 05. pii: e20211476. [Epub ahead of print]219(12):
      Natural killer (NK) cells are critical to immune surveillance against infections and cancer. Their role in immune surveillance requires that NK cells are present within tissues in a quiescent state. Mechanisms by which NK cells remain quiescent in tissues are incompletely elucidated. The transcriptional repressor BACH2 plays a critical role within the adaptive immune system, but its function within innate lymphocytes has been unclear. Here, we show that BACH2 acts as an intrinsic negative regulator of NK cell maturation and function. BACH2 is expressed within developing and mature NK cells and promotes the maintenance of immature NK cells by restricting their maturation in the presence of weak stimulatory signals. Loss of BACH2 within NK cells results in accumulation of activated NK cells with unrestrained cytotoxic function within tissues, which mediate augmented immune surveillance to pulmonary cancer metastasis. These findings establish a critical function of BACH2 as a global negative regulator of innate cytotoxic function and tumor immune surveillance by NK cells.
    DOI:  https://doi.org/10.1084/jem.20211476
  35. Genes Dis. 2022 Nov;9(6): 1727-1741
      Alterations in cellular metabolism may contribute to tumor proliferation and survival. Upregulation of the facilitative glucose transporter (GLUT) plays a key role in promoting cancer. GLUT5 mediates modulation of fructose utilization, and its overexpression has been associated with poor prognosis in several cancers. However, its metabolic regulation remains poorly understood. Here, we demonstrated elevated GLUT5 expression in human cholangiocarcinoma (CCA), using RNA sequencing data from samples of human tissues and cell lines, as compared to normal liver tissues or a cholangiocyte cell line. Cells exhibiting high-expression of GLUT5 showed increased rates of cell proliferation and ATP production, particularly in a fructose-supplemented medium. In contrast, GLUT5 silencing attenuated cell proliferation, ATP production, cell migration/invasion, and improved epithelial-mesenchymal transition (EMT) balance. Correspondingly, fructose consumption increased tumor growth in a nude mouse xenograft model, and GLUT5 silencing suppressed growth, supporting the tumor-inhibitory effect of GLUT5 downregulation. Furthermore, in the metabolic pathways of fructolysis-Warburg effect, the expression levels of relative downstream genes, including ketohexokinase (KHK), aldolase B (ALDOB), lactate dehydrogenase A (LDHA), and monocarboxylate transporter 4 (MCT4), as well as hypoxia-inducible factor 1 alpha (HIF1A), were altered in a GLUT5 expression-dependent manner. Taken together, these findings indicate that GLUT5 could be a potential target for CCA therapeutic approach via metabolic regulation.
    Keywords:  Cholangiocarcinoma; Fructose; Glucose transporter 5; Metabolic regulation; Warburg effect
    DOI:  https://doi.org/10.1016/j.gendis.2021.09.002
  36. Commun Biol. 2022 Sep 26. 5(1): 1013
      Candida species are a dominant constituent of the human mycobiome and associated with the development of several diseases. Understanding the Candida species metabolism could provide key insights into their ability to cause pathogenesis. Here, we have developed the BioFung database, providing an efficient annotation of protein-encoding genes. Along, with BioFung, using carbohydrate-active enzyme (CAZymes) analysis, we have uncovered core and accessory features across Candida species demonstrating plasticity, adaption to the environment and acquired features. We show a greater importance of amino acid metabolism, as functional analysis revealed that all Candida species can employ amino acid metabolism. However, metabolomics revealed that only a specific cluster of species (AGAu species-C. albicans, C. glabrata and C. auris) utilised amino acid metabolism including arginine, cysteine, and methionine metabolism potentially improving their competitive fitness in pathogenesis. We further identified critical metabolic pathways in the AGAu cluster with biomarkers and anti-fungal target potential in the CAZyme profile, polyamine, choline and fatty acid biosynthesis pathways. This study, combining genomic analysis, and validation with gene expression and metabolomics, highlights the metabolic diversity with AGAu species that underlies their remarkable ability to dominate they mycobiome and cause disease.
    DOI:  https://doi.org/10.1038/s42003-022-03955-z
  37. EMBO Rep. 2022 Sep 26. e54746
      Melanoma is the deadliest of skin cancers and has a high tendency to metastasize to distant organs. Calcium and metabolic signals contribute to melanoma invasiveness; however, the underlying molecular details are elusive. The MCU complex is a major route for calcium into the mitochondrial matrix but whether MCU affects melanoma pathobiology was not understood. Here, we show that MCUA expression correlates with melanoma patient survival and is decreased in BRAF kinase inhibitor-resistant melanomas. Knockdown (KD) of MCUA suppresses melanoma cell growth and stimulates migration and invasion. In melanoma xenografts, MCUA_KD reduces tumor volumes but promotes lung metastases. Proteomic analyses and protein microarrays identify pathways that link MCUA and melanoma cell phenotype and suggest a major role for redox regulation. Antioxidants enhance melanoma cell migration, while prooxidants diminish the MCUA_KD -induced invasive phenotype. Furthermore, MCUA_KD increases melanoma cell resistance to immunotherapies and ferroptosis. Collectively, we demonstrate that MCUA controls melanoma aggressive behavior and therapeutic sensitivity. Manipulations of mitochondrial calcium and redox homeostasis, in combination with current therapies, should be considered in treating advanced melanoma.
    Keywords:  MCU; ROS; calcium; melanoma; mitochondria
    DOI:  https://doi.org/10.15252/embr.202254746
  38. Cell Mol Neurobiol. 2022 Sep 30.
      The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
    Keywords:  Cerebral ischemia/reperfusion; Epigenetic; FAD; Ischemic stroke; NAD+; Poly(ADP-ribose) polymerase; Sirtuins
    DOI:  https://doi.org/10.1007/s10571-022-01287-4
  39. Mol Cell Biol. 2022 Sep 26. e0017122
      Cellular senescence is a stable form of cell cycle arrest associated with proinflammatory responses. Senescent cells can be cleared by the immune system as a part of normal tissue homeostasis. However, senescent cells can also accumulate in aged and diseased tissues, contributing to inflammation and disease progression. The mechanisms mediating the impaired immune-mediated clearance of senescent cells are poorly understood. Here, we report that senescent cells upregulate the immune checkpoint molecule PD-L1, the ligand for PD-1 on immune cells, which drives immune cell inactivation. The induction of PD-L1 in senescence is dependent on the proinflammatory program. Furthermore, the secreted factors released by senescent cells are sufficient to upregulate PD-L1 in nonsenescent control cells, mediated by the JAK-STAT pathway. In addition, we show that prolongevity intervention rapamycin downregulates PD-L1 in senescent cells. Last, we found that PD-L1 is upregulated in several tissues in naturally aged mice and in the lungs of idiopathic pulmonary fibrosis patients. Together, our results report that senescence and aging are associated with upregulation of a major immune checkpoint molecule, PD-L1. Targeting PD-L1 may offer new therapeutic opportunities in treating senescence and age-associated diseases.
    Keywords:  PD-L1; SASP; aging; senescence
    DOI:  https://doi.org/10.1128/mcb.00171-22
  40. Cell Discov. 2022 Sep 27. 8(1): 96
      Metabolism feeds into the regulation of epigenetics via metabolic enzymes and metabolites. However, metabolic features, and their impact on epigenetic remodeling during mammalian pre-implantation development, remain poorly understood. In this study, we established the metabolic landscape of mouse pre-implantation embryos from zygote to blastocyst, and quantified some absolute carbohydrate metabolites. We integrated these data with transcriptomic and proteomic data, and discovered the metabolic characteristics of the development process, including the activation of methionine cycle from 8-cell embryo to blastocyst, high glutaminolysis metabolism at blastocyst stage, enhanced TCA cycle activity from the 8-cell embryo stage, and active glycolysis in the blastocyst. We further demonstrated that oxidized nicotinamide adenine dinucleotide (NAD+) synthesis is indispensable for mouse pre-implantation development. Mechanistically, in part, NAD+ is required for the exit of minor zygotic gene activation (ZGA) by cooperating with SIRT1 to remove zygotic H3K27ac. In human, NAD+ supplement can promote the removal of zygotic H3K27ac and benefit pre-implantation development. Our findings demonstrate that precise and timely regulation of minor ZGA is controlled by metabolic dynamics, and enhance our understanding of the metabolism of mammalian early embryos.
    DOI:  https://doi.org/10.1038/s41421-022-00440-z
  41. Elife. 2022 Sep 27. pii: e72847. [Epub ahead of print]11
      Major genomic deletions in independent eukaryotic lineages have led to repeated ancestral loss of biosynthesis pathways for nine of the twenty canonical amino acids1. While the evolutionary forces driving these polyphyletic deletion events are not well understood, the consequence is that extant metazoans are unable to produce nine essential amino acids (EAAs). Previous studies have highlighted that EAA biosynthesis tends to be more energetically costly2,3, raising the possibility that these pathways were lost from organisms with access to abundant EAAs in the environment4,5. It is unclear whether present-day metazoans can reaccept these pathways to resurrect biosynthetic capabilities that were lost long ago or whether evolution has rendered EAA pathways incompatible with metazoan metabolism. Here, we report progress on a large-scale synthetic genomics effort to reestablish EAA biosynthetic functionality in mammalian cells. We designed codon-optimized biosynthesis pathways based on genes mined from Escherichia coli. These pathways were de novo synthesized in 3 kilobase chunks, assembled in yeasto and genomically integrated into a Chinese Hamster Ovary (CHO) cell line. One synthetic pathway produced valine at a sufficient level for cell viability and proliferation, and thus represents a successful example of metazoan EAA biosynthesis restoration. This prototrophic CHO line grows in valine-free medium, and metabolomics using labeled precursors verified de novo biosynthesis of valine. RNA-seq profiling of the valine prototrophic CHO line showed that the synthetic pathway minimally disrupted the cellular transcriptome. Furthermore, valine prototrophic cells exhibited transcriptional signatures associated with rescue from nutritional starvation. 13C-tracing revealed build-up of pathway intermediate 2,3-dihydroxy-3-isovalerate in these cells. Increasing the dosage of downstream ilvD boosted pathway performance and allowed for long-term propagation of second-generation cells in valine-free medium at a consistent doubling time of 3.2 days. This work demonstrates that mammalian metabolism is amenable to restoration of ancient core pathways, paving a path for genome-scale efforts to synthetically restore metabolic functions to the metazoan lineage.
    Keywords:  cell biology; genetics; genomics
    DOI:  https://doi.org/10.7554/eLife.72847
  42. Sci Signal. 2022 Sep 27. 15(753): eaaz4742
      Blood vessels deliver oxygen and nutrients that sustain tumor growth and enable the dissemination of cancer cells to distant sites and the recruitment of intratumoral immune cells. In addition, the structural and functional abnormalities of the tumor vasculature foster the development of an aggressive tumor microenvironment and impair the efficacy of existing cancer therapies. Extracellular vesicles (EVs) have emerged as major players of tumor progression, and a growing body of evidence has demonstrated that EVs derived from cancer cells trigger multiple responses in endothelial cells that alter blood vessel function in tumors. EV-mediated signaling in endothelial cells can occur through the transfer of functional cargos such as miRNAs, lncRNAs, cirRNAs, and proteins. Moreover, membrane-bound proteins in EVs can elicit receptor-mediated signaling in endothelial cells. Together, these mechanisms reprogram endothelial cells and contribute to the sustained exacerbated angiogenic signaling typical of tumors, which, in turn, influences cancer progression. Targeting these angiogenesis-promoting EV-dependent mechanisms may offer additional strategies to normalize tumor vasculature. Here, we discuss the current knowledge pertaining to the contribution of cancer cell-derived EVs in mechanisms regulating blood vessel functions in tumors. Moreover, we discuss the translational opportunities in targeting the dysfunctional tumor vasculature using EVs and highlight the open questions in the field of EV biology that can be addressed using mass spectrometry-based proteomics analysis.
    DOI:  https://doi.org/10.1126/scisignal.aaz4742
  43. FEBS Lett. 2022 Sep 30.
      Complex I converts oxidoreduction energy into a proton electrochemical gradient across the inner mitochondrial or bacterial cell membrane. This gradient is the primary source of energy for aerobic synthesis of ATP. Oxidation of reduced nicotinamide adenine dinucleotide (NADH) by ubiquinone (Q) yields NAD+ and ubiquinol (QH2 ), which is tightly coupled to translocation of four protons from the negatively to the positively charged side of the membrane. Electrons from NADH oxidation reach the iron-sulfur centre N2 positioned near the bottom of a tunnel that extends ca. 30Å from the membrane domain into the hydrophilic domain of the complex. The tunnel is occupied by ubiquinone, which can take a distal position near the N2 centre, or proximal positions closer to the membrane. Here, we review important structural, kinetic and thermodynamic properties of ubiquinone that define its role in complex I function. We suggest that this function exceeds that of a mere substrate or electron acceptor, and propose that ubiquinone may be the redox element of complex I coupling electron transfer to proton translocation.
    Keywords:  energy conservation; mitochondria; oxidative phosphorylation; proton pumping
    DOI:  https://doi.org/10.1002/1873-3468.14506
  44. STAR Protoc. 2022 Sep 27. pii: S2666-1667(22)00571-8. [Epub ahead of print]3(4): 101691
      Tumor vessel co-option, a process in which cancer cells "hijack" pre-existing blood vessels to grow and invade healthy tissue, is poorly understood but is a proposed resistance mechanism against anti-angiogenic therapy (AAT). Here, we describe protocols for establishing murine renal (RENCA) and breast (4T1) cancer lung vessel co-option metastases models. Moreover, we outline a reproducible protocol for single-cell isolation from murine lung metastases using magnetic-activated cell sorting as well as immunohistochemical stainings to distinguish vessel co-option from angiogenesis. For complete details on the use and execution of this protocol, please refer to Teuwen et al. (2021).
    Keywords:  Antibody; Cancer; Cell isolation; Model organisms; Single cell
    DOI:  https://doi.org/10.1016/j.xpro.2022.101691
  45. Front Oncol. 2022 ;12 990672
      The sterol regulatory-element binding proteins (SREBPs) are transcription factors controlling cholesterol and fatty acid synthesis and metabolism. There are three SREBP proteins, SREBP1a, SREBP1c and SREBP2, with SREBP1a being the strongest transcription factor. The expression of SREBP1a is restricted to rapidly proliferating cells, including cancer cells. The SREBP proteins are translated as large, inactive precursors bound to the endoplasmic reticulum (ER) membranes. These precursors undergo a two-step cleavage process that releases the amino terminal domains of the proteins, which translocate to the nucleus and function as transcription factors. The nuclear forms of the SREBPs are rapidly degraded by the ubiquitin-proteasome system in a manner dependent on the Fbw7 ubiquitin ligase. Consequently, inactivation of Fbw7 results in the stabilization of active SREBP1 and SREBP2 and enhanced expression of target genes. We report that the inactivation of Fbw7 in cancer cells blocks the proteolytic maturation of SREBP2. The same is true in cells expressing a cancer-specific loss-of-function Fbw7 protein. Interestingly, the activation of SREBP2 is restored in response to cholesterol depletion, suggesting that Fbw7-deficient cells accumulate cholesterol. Importantly, inactivation of SREBP1 in Fbw7-deficient cells also restores the cholesterol-dependent regulation of SREBP2, suggesting that the stabilization of active SREBP1 molecules could be responsible for the blunted activation of SREBP2 in Fbw7-deficient cancer cells. We suggest that this could be an important negative feedback loop in cancer cells with Fbw7 loss-of-function mutations to protect these cells from the accumulation of toxic levels of cholesterol and/or cholesterol metabolites. Surprisingly, we also found that the inactivation of Fbw7 resulted in the activation of AKT. Importantly, the activation of AKT was dependent on SREBP1 and on the accumulation of cholesterol. Thus, we suggest that the loss of Fbw7 rewires lipid metabolism in cancer cells to support cell proliferation and survival.
    Keywords:  AKT; Fbw7; PI3K; SREBP; cancer; cholesterol
    DOI:  https://doi.org/10.3389/fonc.2022.990672
  46. Sci Adv. 2022 Sep 30. 8(39): eabn9828
      Current gold standard diagnostic strategies are unable to accurately differentiate malignant from benign small renal masses preoperatively; consequently, 20% of patients undergo unnecessary surgery. Devising a more confident presurgical diagnosis is key to improving treatment decision-making. We therefore developed MethylBoostER, a machine learning model leveraging DNA methylation data from 1228 tissue samples, to classify pathological subtypes of renal tumors (benign oncocytoma, clear cell, papillary, and chromophobe RCC) and normal kidney. The prediction accuracy in the testing set was 0.960, with class-wise ROC AUCs >0.988 for all classes. External validation was performed on >500 samples from four independent datasets, achieving AUCs >0.89 for all classes and average accuracies of 0.824, 0.703, 0.875, and 0.894 for the four datasets. Furthermore, consistent classification of multiregion samples (N = 185) from the same patient demonstrates that methylation heterogeneity does not limit model applicability. Following further clinical studies, MethylBoostER could facilitate a more confident presurgical diagnosis to guide treatment decision-making in the future.
    DOI:  https://doi.org/10.1126/sciadv.abn9828
  47. Proc Natl Acad Sci U S A. 2022 Oct 04. 119(40): e2203904119
      Many calcifying organisms utilize metabolic CO2 to generate CaCO3 minerals to harden their shells and skeletons. Carbonic anhydrases are evolutionary ancient enzymes that have been proposed to play a key role in the calcification process, with the underlying mechanisms being little understood. Here, we used the calcifying primary mesenchyme cells (PMCs) of sea urchin larva to study the role of cytosolic (iCAs) and extracellular carbonic anhydrases (eCAs) in the cellular carbon concentration mechanism (CCM). Molecular analyses identified iCAs and eCAs in PMCs and highlight the prominent expression of a glycosylphosphatidylinositol-anchored membrane-bound CA (Cara7). Intracellular pH recordings in combination with CO2 pulse experiments demonstrated iCA activity in PMCs. iCA activity measurements, together with pharmacological approaches, revealed an opposing contribution of iCAs and eCAs on the CCM. H+-selective electrodes were used to demonstrate eCA-catalyzed CO2 hydration rates at the cell surface. Knockdown of Cara7 reduced extracellular CO2 hydration rates accompanied by impaired formation of specific skeletal segments. Finally, reduced pHi regulatory capacities during inhibition and knockdown of Cara7 underscore a role of this eCA in cellular HCO3- uptake. This work reveals the function of CAs in the cellular CCM of a marine calcifying animal. Extracellular hydration of metabolic CO2 by Cara7 coupled to HCO3- uptake mechanisms mitigates the loss of carbon and reduces the cellular proton load during the mineralization process. The findings of this work provide insights into the cellular mechanisms of an ancient biological process that is capable of utilizing CO2 to generate a versatile construction material.
    Keywords:  biomineralization; carbon fixation; intracellular pH; metabolic CO2; ocean acidification
    DOI:  https://doi.org/10.1073/pnas.2203904119
  48. Nat Commun. 2022 Sep 29. 13(1): 5726
      Membrane-less organelles are condensates formed by phase separation whose functions often remain enigmatic. Upon oxidative stress, PML scaffolds Nuclear Bodies (NBs) to regulate senescence or metabolic adaptation. PML NBs recruit many partner proteins, but the actual biochemical mechanism underlying their pleiotropic functions remains elusive. Similarly, PML role in embryonic stem cell (ESC) and retro-element biology is unsettled. Here we demonstrate that PML is essential for oxidative stress-driven partner SUMO2/3 conjugation in mouse ESCs (mESCs) or leukemia, a process often followed by their poly-ubiquitination and degradation. Functionally, PML is required for stress responses in mESCs. Differential proteomics unravel the KAP1 complex as a PML NB-dependent SUMO2-target in arsenic-treated APL mice or mESCs. PML-driven KAP1 sumoylation enables activation of this key epigenetic repressor implicated in retro-element silencing. Accordingly, Pml-/- mESCs re-express transposable elements and display 2-Cell-Like features, the latter enforced by PML-controlled SUMO2-conjugation of DPPA2. Thus, PML orchestrates mESC state by coordinating SUMO2-conjugation of different transcriptional regulators, raising new hypotheses about PML roles in cancer.
    DOI:  https://doi.org/10.1038/s41467-022-33147-6
  49. Sci Rep. 2022 Sep 29. 12(1): 16277
      Glioblastoma is the most common brain tumor with dismal outcomes in adults. Metabolic remodeling is now widely acknowledged as a hallmark of cancer cells, but glioblastoma-specific metabolic pathways remain unclear. Here we show, using a large-scale targeted proteomics platform and integrated molecular pathway-level analysis tool, that the de novo pyrimidine synthesis pathway and serine synthesis pathway (SSP) are the major enriched pathways in vivo for patients with glioblastoma. Among the enzymes associated with nucleotide synthesis, RRM1 and NME1 are significantly upregulated in glioblastoma. In the SSP, SHMT2 and PSPH are upregulated but the upstream enzyme PSAT1 is downregulated in glioblastoma. Kaplan-Meier curves of overall survival for the GSE16011 and The Cancer Genome Atlas datasets revealed that high SSP activity correlated with poor outcome. Enzymes relating to the pyrimidine synthesis pathway and SSP might offer therapeutic targets for new glioblastoma treatments.
    DOI:  https://doi.org/10.1038/s41598-022-20613-w
  50. MicroPubl Biol. 2022 ;2022
      Coenzyme Q (CoQ; ubiquinone) is an obligate component of the mitochondrial electron transport chain. COQ7 is a mitochondrial hydroxylase that is required for CoQ biosynthesis. COQ7 belongs to di-iron carboxylate enzymes, a rare type of enzyme that carries out a wide range of reactions. We found that manganese exposure of mouse cells leads to decreased COQ7 activity, but that pre-treatment with cobalt interferes with the inhibition by manganese. Our findings suggest that cobalt has greater affinity for the active site of COQ7 than both iron and manganese and that replacement of iron by cobalt at the active site preserves catalytic activity.
    DOI:  https://doi.org/10.17912/micropub.biology.000635
  51. Proc Natl Acad Sci U S A. 2022 Oct 04. 119(40): e2205755119
      Ketone bodies are energy-rich metabolites and signaling molecules whose production is mainly regulated by diet. Caloric restriction (CR) is a dietary intervention that improves metabolism and extends longevity across the taxa. We found that CR induced high-amplitude daily rhythms in blood ketone bodies (beta-hydroxybutyrate [βOHB]) that correlated with liver βOHB level. Time-restricted feeding, another periodic fasting-based diet, also led to rhythmic βOHB but with reduced amplitude. CR induced strong circadian rhythms in the expression of fatty acid oxidation and ketogenesis genes in the liver. The transcriptional factor peroxisome-proliferator-activated-receptor α (PPARα) and its transcriptional target hepatokine fibroblast growth factor 21 (FGF21) are primary regulators of ketogenesis. Fgf21 expression and the PPARα transcriptional network became highly rhythmic in the CR liver, which implicated the involvement of the circadian clock. Mechanistically, the circadian clock proteins CLOCK, BMAL1, and cryptochromes (CRYs) interfered with PPARα transcriptional activity. Daily rhythms in the blood βOHB level and in the expression of PPARα target genes were significantly impaired in circadian clock-deficient Cry1,2-/- mice. These data suggest that blood βOHB level is tightly controlled and that the circadian clock is a regulator of diet-induced ketogenesis.
    Keywords:  aging; caloric restriction; circadian rhythms; fatty acid metabolism; metabolism
    DOI:  https://doi.org/10.1073/pnas.2205755119
  52. Pharmacol Res. 2022 Sep 26. pii: S1043-6618(22)00412-1. [Epub ahead of print] 106466
      Until recently it was thought that most humans only harbor one type of mitochondrial DNA (mtDNA), however, deep sequencing and single-cell analysis has shown the converse - that mixed populations of mtDNA (heteroplasmy) are the norm. This is important because heteroplasmy levels can change dramatically during transmission in the female germ line, leading to high levels causing severe mitochondrial diseases. There is also emerging evidence that low level mtDNA mutations contribute to common late onset diseases such as neurodegenerative disorders and cardiometabolic diseases because the inherited mutation levels can change within developing organs and non-dividing cells over time. Initial predictions suggested that the segregation of mtDNA heteroplasmy was largely stochastic, with an equal tendency for levels to increase or decrease. However, transgenic animal work and single-cell analysis have shown this not to be the case during germ-line transmission and in somatic tissues during life. Mutation levels in specific mtDNA regions can increase or decrease in different contexts and the underlying molecular mechanisms are starting to be unraveled. In this review we provide a synthesis of recent literature on the mechanisms of selection for and against mtDNA variants. We identify the most pertinent gaps in our understanding and suggest ways these could be addressed using state of the art techniques.
    Keywords:  mitochondria; mitophagy; mtDNA; mutant; selection; selfish
    DOI:  https://doi.org/10.1016/j.phrs.2022.106466
  53. Metabolomics. 2022 Oct 01. 18(10): 77
      Single cell metabolomics is an emerging and rapidly developing field that complements developments in single cell analysis by genomics and proteomics. Major goals include mapping and quantifying the metabolome in sufficient detail to provide useful information about cellular function in highly heterogeneous systems such as tissue, ultimately with spatial resolution at the individual cell level. The chemical diversity and dynamic range of metabolites poses particular challenges for detection, identification and quantification. In this review we discuss both significant technical issues of measurement and interpretation, and progress toward addressing them, with recent examples from diverse biological systems. We provide a framework for further directions aimed at improving workflow and robustness so that such analyses may become commonly applied, especially in combination with metabolic imaging and single cell transcriptomics and proteomics.
    Keywords:  Metabolic imaging; Single cell metabolism; Spatial metabolomics
    DOI:  https://doi.org/10.1007/s11306-022-01934-3
  54. Trends Cell Biol. 2022 Sep 26. pii: S0962-8924(22)00212-4. [Epub ahead of print]
      Mutations in RAS are key oncogenic drivers and therapeutic targets. Oncogenic Ras proteins activate a network of downstream signalling pathways, including extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K), promoting cell proliferation and survival. However, there is increasing evidence that RAS oncogenes also alter the mechanical properties of both individual malignant cells and transformed tissues. Here we discuss the role of oncogenic RAS in controlling mechanical cell phenotypes and how these mechanical changes promote oncogenic transformation in single cells and tissues. RAS activation alters actin organisation and actomyosin contractility. These changes alter cell rheology and impact mechanosensing through changes in substrate adhesion and YAP/TAZ-dependent mechanotransduction. We then discuss how these changes play out in cell collectives and epithelial tissues by driving large-scale tissue deformations and the expansion of malignant cells. Uncovering how RAS oncogenes alter cell mechanics will lead to a better understanding of the morphogenetic processes that underlie tumour formation in RAS-mutant cancers.
    Keywords:  RAS; YAP/TAZ signalling; actin; epithelia; mechanobiology; mechanotransduction; myosin; oncogene; tissue mechanics
    DOI:  https://doi.org/10.1016/j.tcb.2022.09.002
  55. Am J Physiol Cell Physiol. 2022 Sep 26.
      In clear cell renal cell carcinoma, the VHL/HIF axis lays the groundwork for tumorigenesis and is the target of many therapeutic agents. However, HIF activation alone is largely insufficient for kidney tumor development, and the secondary mutations in PBRM1, BAP1, SETD2, KDM5C or other tumor suppressor genes are strong enablers of tumorigenesis. Interestingly, it has been discovered that VHL loss, and subsequent HIF activation, result in ISGF3 upregulation a negative feedback loop mediated by ISGF3, a transcription factor activated by type I interferon, and the secondary mutations in multiple tumor suppressor genes all partially disable this negative feedback loop to facilitate tumor growth. The convergence of so many cancer genes on this pathway suggests that it plays an important role in ccRCC development and maintenance. The tumors with secondary mutations that dampen the negative feedback loop might be exquisitely sensitive to its reactivation, and pharmacological activation of ISGF3 could be an effective method to treat ccRCC patients either alone or in combination with other effective therapies. In this review, we examine the relevance of the type I IFN pathway to ccRCC, synthesize our current knowledge of the ccRCC tumor suppressors in its regulation, and explore how this may impact the future treatment of ccRCC patients.
    Keywords:  BAP1; PBRM1; Type I interferon; VHL/HIF; ccRCC
    DOI:  https://doi.org/10.1152/ajpcell.00255.2022
  56. Front Oncol. 2022 ;12 970208
       Background: The upregulation of amino acid metabolism is an essential form of metabolic reprogramming in cancer. Here, we developed an amino acid metabolism signature to predict prognosis and anti-PD-1 therapy response in clear cell renal cell carcinoma (ccRCC).
    Methods: According to the amino acid metabolism-associated gene sets contained in the Molecular Signature Database, consensus clustering was performed to divide patients into two clusters. An amino acid metabolism-associated signature was identified and verified. Immune cell infiltrates and their corresponding signature risk scores were investigated. Two independent cohorts of clinical trials were analyzed to explore the correspondence between the signature risk score and the immune therapy response.
    Results: Two clusters with different amino acid metabolic levels were identified by consensus clustering. The patients in the two clusters differed in overall survival, progression-free survival, amino acid metabolic status, and tumor microenvironment. We identified a signature containing eight amino acid metabolism-associated genes that could accurately predict the prognosis of patients with ccRCC. The signature risk score was positively correlated with infiltration of M1 macrophages, CD8+ T cells, and regulatory T cells, whereas it was negatively correlated with infiltration of neutrophils, NK cells, and CD4+ T cells. Patients with lower risk scores had better overall survival but worse responses to nivolumab.
    Conclusion: Amino acid metabolic status is closely correlated with tumor microenvironment, response to checkpoint blockade therapy, and prognosis in patients with ccRCC. The established amino acid metabolism-associated gene signature can predict both survival and anti-PD-1 therapy response in patients with ccRCC.
    Keywords:  amino acid metabolism; anti-PD-1 therapy; ccRCC; prognosis; signature
    DOI:  https://doi.org/10.3389/fonc.2022.970208
  57. Cell. 2022 Sep 29. pii: S0092-8674(22)01173-4. [Epub ahead of print]185(20): 3807-3822.e12
      Fungal microorganisms (mycobiota) comprise a small but immunoreactive component of the human microbiome, yet little is known about their role in human cancers. Pan-cancer analysis of multiple body sites revealed tumor-associated mycobiomes at up to 1 fungal cell per 104 tumor cells. In lung cancer, Blastomyces was associated with tumor tissues. In stomach cancers, high rates of Candida were linked to the expression of pro-inflammatory immune pathways, while in colon cancers Candida was predictive of metastatic disease and attenuated cellular adhesions. Across multiple GI sites, several Candida species were enriched in tumor samples and tumor-associated Candida DNA was predictive of decreased survival. The presence of Candida in human GI tumors was confirmed by external ITS sequencing of tumor samples and by culture-dependent analysis in an independent cohort. These data implicate the mycobiota in the pathogenesis of GI cancers and suggest that tumor-associated fungal DNA may serve as diagnostic or prognostic biomarkers.
    Keywords:  Blastomyces; Candida; Malassezia; cancer; colon cancer; lung cancer; mycobiome; stomach cancer; trans-kingdom interactions; tumor-associated fungi
    DOI:  https://doi.org/10.1016/j.cell.2022.09.015
  58. Nature. 2022 Sep;609(7929): 1038-1047
      Oxidative genome damage is an unavoidable consequence of cellular metabolism. It arises at gene regulatory elements by epigenetic demethylation during transcriptional activation1,2. Here we show that promoters are protected from oxidative damage via a process mediated by the nuclear mitotic apparatus protein NuMA (also known as NUMA1). NuMA exhibits genomic occupancy approximately 100 bp around transcription start sites. It binds the initiating form of RNA polymerase II, pause-release factors and single-strand break repair (SSBR) components such as TDP1. The binding is increased on chromatin following oxidative damage, and TDP1 enrichment at damaged chromatin is facilitated by NuMA. Depletion of NuMA increases oxidative damage at promoters. NuMA promotes transcription by limiting the polyADP-ribosylation of RNA polymerase II, increasing its availability and release from pausing at promoters. Metabolic labelling of nascent RNA identifies genes that depend on NuMA for transcription including immediate-early response genes. Complementation of NuMA-deficient cells with a mutant that mediates binding to SSBR, or a mitotic separation-of-function mutant, restores SSBR defects. These findings underscore the importance of oxidative DNA damage repair at gene regulatory elements and describe a process that fulfils this function.
    DOI:  https://doi.org/10.1038/s41586-022-05217-8