J Biol Chem. 2023 Jul 26. pii: S0021-9258(23)02125-7. [Epub ahead of print] 105097
The conserved protein kinase mTOR (mechanistic target of rapamycin) responds to diverse environmental cues to control cell metabolism and promote cell growth, proliferation, and survival as part of two multiprotein complexes, mTOR complex 1 (mTORC1) and mTORC2. Our prior work demonstrated that an alkaline intracellular pH (pHi) increases mTORC2 activity and cell survival in complete media in part by activating AMPK, a kinase best known to sense energetic stress. It is important to note that an alkaline pHi represents an under-appreciated hallmark of cancer cells that promotes their oncogenic behaviors. In addition, mechanisms that control mTORC1 and mTORC2 signaling and function remain incompletely defined, particularly in response to stress conditions. Here, we demonstrate that an alkaline pHi increases PI3K activity to promote mTORC1 and mTORC2 signaling in the absence of serum growth factors. Alkaline pHi increases mTORC1 activity through PI3K-Akt signaling, which mediates inhibitory phosphorylation of the upstream proteins TSC2 and PRAS40 and dissociates TSC2 from lysosomal membranes, thus enabling Rheb-mediated activation of mTORC1. Thus, we show that an alkaline pHi mimics growth factor-PI3K signaling. Functionally, we also demonstrate that an alkaline pHi increases cap-dependent protein synthesis through inhibitory phosphorylation of 4EBP1 and suppresses apoptosis in a PI3K- and mTOR-dependent manner. We speculate that an alkaline pHi promotes a low, basal level of cell metabolism (e.g., protein synthesis) that enables cancer cells within growing tumors to proliferate and survive despite limiting growth factors and nutrients, in part through elevated PI3K-mTORC1 and/or PI3K-mTORC2 signaling.
Keywords: Akt PKB; S6 kinase; apoptosis; cell signaling; eukaryotic translation initiation factor 4E (eIF4E); eukaryotic translation initiation factor 4E-binding protein (eIF4EBP1); pH regulation; phosphatidylinositide 3-kinase (PI 3-kinase); protein synthesis; target of rapamycin (TOR)