Metabolomics. 2025 Feb 13. 21(2): 26
INTRODUCTION: Despite considerable advances in cancer research, the increasing prevalence and high mortality rate of clear cell renal cell carcinoma (ccRCC) remain a significant challenge. A more detailed comprehension of the distinctive metabolic characteristics of ccRCC is vital to enhance diagnostic, prognostic, and therapeutic strategies.
OBJECTIVES: This study aimed to investigate the metabolic signatures of ccRCC tumours and, for the first time, their correlation with the urinary metabolome of the same patients.
METHODS: We applied a gas chromatography-mass spectrometry (GC-MS)-based metabolomic approach to analyse matched tissue and urine samples from a cohort of 18 ccRCC patients and urine samples from 18 cancer-free controls. Multivariate and univariate statistical methods, as well as pathway and correlation analyses, were performed to assess metabolic dysregulations and correlations between tissue and urine.
RESULTS: The results showed a ccRCC metabolic signature characterized by reprogramming in amino acid, energy, and sugar and inositol phosphate metabolisms. Our study identified, for the first time, significantly decreased levels of asparagine, proline, gluconate, 3-aminoisobutanoate, 4-aminobutanoate and urea in ccRCC tumours, highlighting the involvement of arginine biosynthesis, β-alanine metabolism and purine and pyrimidine metabolism in ccRCC. The correlations between tissue and urine metabolomes provide evidence for the potential usefulness of urinary metabolites in understanding systemic metabolic changes driven by RCC tumours.
CONCLUSIONS: These findings significantly advance our understanding of metabolic reprogramming in ccRCC and the systemic metabolic changes associated with the disease. Future research is needed to validate these findings in larger cohorts and to determine their potential implications for diagnosis and targeted therapies.
Keywords: Clear cell renal cell carcinoma (ccRCC); Gas-chromatography-mass spectrometry (GC-MS); Metabolomics; Tissue metabolome; Urine metabolome