bims-celmim Biomed News
on Cellular and mitochondrial metabolism
Issue of 2024‒05‒19
29 papers selected by
Marc Segarra Mondejar



  1. Nat Rev Endocrinol. 2024 May 17.
      Ground-breaking discoveries have established 5'-AMP-activated protein kinase (AMPK) as a central sensor of metabolic stress in cells and tissues. AMPK is activated through cellular starvation, exercise and drugs by either directly or indirectly affecting the intracellular AMP (or ADP) to ATP ratio. In turn, AMPK regulates multiple processes of cell metabolism, such as the maintenance of cellular ATP levels, via the regulation of fatty acid oxidation, glucose uptake, glycolysis, autophagy, mitochondrial biogenesis and degradation, and insulin sensitivity. Moreover, AMPK inhibits anabolic processes, such as lipogenesis and protein synthesis. These findings support the notion that AMPK is a crucial regulator of cell catabolism. However, studies have revealed that AMPK's role in cell homeostasis might not be as unidirectional as originally thought. This Review explores emerging evidence for AMPK as a promoter of cell survival and an enhancer of anabolic capacity in skeletal muscle and adipose tissue during catabolic crises. We discuss AMPK-activating interventions for tissue preservation during tissue wasting in cancer-associated cachexia and explore the clinical potential of AMPK activation in wasting conditions. Overall, we provide arguments that call for a shift in the current dogma of AMPK as a mere regulator of cell catabolism, concluding that AMPK has an unexpected role in tissue preservation.
    DOI:  https://doi.org/10.1038/s41574-024-00992-y
  2. Elife. 2024 May 13. pii: RP91141. [Epub ahead of print]12
      The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.
    Keywords:  aerobic glycolysis; glucose transport; glucose-alanine cycle; mouse; neuroscience; photoreceptor metabolism; retinal metabolism; retinitis pigmentosa
    DOI:  https://doi.org/10.7554/eLife.91141
  3. Autophagy. 2024 May 14.
      AMPK promotes catabolic and suppresses anabolic cell metabolism to promote cell survival during energetic stress, in part by inhibiting MTORC1, an anabolic kinase requiring sufficient levels of amino acids. We found that cells lacking AMPK displayed increased apoptotic cell death during nutrient stress caused by prolonged amino acid deprivation. We presumed that impaired macroautophagy/autophagy explained this phenotype, as a prevailing view posits that AMPK initiates autophagy (often a pro-survival response) through phosphorylation of ULK1. Unexpectedly, however, autophagy remained unimpaired in cells lacking AMPK, as monitored by several autophagic readouts in several cell lines. More surprisingly, the absence of AMPK increased ULK1 signaling and MAP1LC3B/LC3B lipidation during amino acid deprivation while AMPK-mediated phosphorylation of ULK1 S555 (a site proposed to initiate autophagy) decreased upon amino acid withdrawal or pharmacological MTORC1 inhibition. In addition, activation of AMPK with compound 991, glucose deprivation, or AICAR blunted autophagy induced by amino acid withdrawal. These results demonstrate that AMPK activation and glucose deprivation suppress autophagy. As AMPK controlled autophagy in an unexpected direction, we examined how AMPK controls MTORC1 signaling. Paradoxically, we observed impaired reactivation of MTORC1 in cells lacking AMPK upon prolonged amino acid deprivation. Together these results oppose established views that AMPK promotes autophagy and inhibits MTORC1 universally. Moreover, they reveal unexpected roles for AMPK in the suppression of autophagy and the support of MTORC1 signaling in the context of prolonged amino acid deprivation. These findings prompt a reevaluation of how AMPK and its control of autophagy and MTORC1 affect health and disease.
    Keywords:  ATG16L1; EIF4EBP1/4EBP1; LC3B; MTOR; RPS6KB1/S6K1; ULK1
    DOI:  https://doi.org/10.1080/15548627.2024.2355074
  4. Nat Cell Biol. 2024 May;26(5): 674-686
      Although it is well described that mitochondria are at the epicentre of the energy demands of a cell, it is becoming important to consider how each cell tailors its mitochondrial composition and functions to suit its particular needs beyond ATP production. Here we provide insight into mitochondrial heterogeneity throughout development as well as in tissues with specific energy demands and discuss how mitochondrial malleability contributes to cell fate determination and tissue remodelling.
    DOI:  https://doi.org/10.1038/s41556-024-01410-1
  5. Apoptosis. 2024 May 17.
      Mitophagy, a specialised form of autophagy, selectively targeting damaged or dysfunctional mitochondria, and is crucial for maintaining cellular homeostasis and mitochondrial quality control. Dysregulation of mitophagy contributes to various pathological conditions, including cancer, neurodegenerative and cardiovascular diseases. This review presents a comprehensive analysis of the molecular mechanisms, regulatory pathways, and interplay with other cellular processes governing mitophagy, emphasizing its importance in physiological and pathological contexts. We explore the PINK1/Parkin-mediated and receptor-mediated mitophagy pathways, encompassing BNIP3/NIX, FUNDC1, and Bcl2-L-13. Additionally, we discuss post-translational modifications and cellular signalling pathways modulating mitophagy, as well as the connection between mitophagy and ageing, highlighting the decline in mitophagy efficiency and its impact on age-related pathologies. The review also investigates mitophagy's role in human diseases such as cancer, myocardial ischemia-reperfusion injury, Parkinson's, and Alzheimer's disease. We assess the potential of mitophagy-targeting therapeutic strategies, focusing on the development of dietary therapies, small molecules, drugs, and gene therapy approaches that modulate mitophagy levels and efficiency for treating these diseases and dysfunctions commonly observed in ageing individuals. In summary, this review offers an extensive overview of the molecular mechanisms and regulatory networks involved in mitophagy, its association with autophagy, and implications in human health and disease. By examining the potential of mitophagy-modulating therapies in disease and non-disease settings, we aim to inspire further research to develop innovative treatment strategies for various pathological conditions linked to mitochondrial dysfunction and to ageing.
    Keywords:  Ageing; Autophagy; Mitophagy
    DOI:  https://doi.org/10.1007/s10495-024-01977-y
  6. Cell Rep. 2024 May 16. pii: S2211-1247(24)00546-1. [Epub ahead of print]43(5): 114218
      Glucose has long been considered a primary energy source for synaptic function. However, it remains unclear to what extent alternative fuels, such as lactate/pyruvate, contribute to powering synaptic transmission. By detecting individual release events in hippocampal synapses, we find that mitochondrial ATP production regulates basal vesicle release probability and release location within the active zone (AZ), evoked by single action potentials. Mitochondrial inhibition shifts vesicle release closer to the AZ center and alters the efficiency of vesicle retrieval by increasing the occurrence of ultrafast endocytosis. Furthermore, we uncover that terminals can use oxidative fuels to maintain the vesicle cycle during trains of activity. Mitochondria are sparsely distributed along hippocampal axons, and we find that terminals containing mitochondria display enhanced vesicle release and reuptake during high-frequency trains. Our findings suggest that mitochondria not only regulate several fundamental features of synaptic transmission but may also contribute to modulation of short-term synaptic plasticity.
    Keywords:  ATP; CP: Metabolism; CP: Neuroscience; glycolysis; hippocampal neuron; mitochondria; nerve terminal; synapse; synaptic transmission
    DOI:  https://doi.org/10.1016/j.celrep.2024.114218
  7. J Cell Sci. 2024 May 01. pii: jcs259775. [Epub ahead of print]137(9):
      Peroxisomes are highly plastic organelles that are involved in several metabolic processes, including fatty acid oxidation, ether lipid synthesis and redox homeostasis. Their abundance and activity are dynamically regulated in response to nutrient availability and cellular stress. Damaged or superfluous peroxisomes are removed mainly by pexophagy, the selective autophagy of peroxisomes induced by ubiquitylation of peroxisomal membrane proteins or ubiquitin-independent processes. Dysregulated pexophagy impairs peroxisome homeostasis and has been linked to the development of various human diseases. Despite many recent insights into mammalian pexophagy, our understanding of this process is still limited compared to our understanding of pexophagy in yeast. In this Cell Science at a Glance article and the accompanying poster, we summarize current knowledge on the control of mammalian pexophagy and highlight which aspects require further attention. We also discuss the role of ubiquitylation in pexophagy and describe the ubiquitin machinery involved in regulating signals for the recruitment of phagophores to peroxisomes.
    Keywords:  Peroxisome; Pexophagy; Selective autophagy; Ubiquitylation
    DOI:  https://doi.org/10.1242/jcs.259775
  8. J Med Virol. 2024 May;96(5): e29672
      This study investigated the intricate interplay between Crimean-Congo hemorrhagic fever virus (CCHFV) infection and alterations in amino acid metabolism. Our primary aim is to elucidate the impact of Crimean-Congo hemorrhagic fever (CCHF) on specific amino acid concentrations and identify potential metabolic markers associated with viral infection. One hundred ninety individuals participated in this study, comprising 115 CCHF patients, 30 CCHF negative patients, and 45 healthy controls. Liquid chromatography-tandem mass spectrometry techniques were employed to quantify amino acid concentrations. The amino acid metabolic profiles in CCHF patients exhibit substantial distinctions from those in the control group. Patients highlight distinct metabolic reprogramming, notably characterized by arginine, histidine, taurine, glutamic acid, and glutamine metabolism shifts. These changes have been associated with the underlying molecular mechanisms of the disease. Exploring novel therapeutic and diagnostic strategies addressing specific amino acids may offer potential means to mitigate the severity of the disease.
    Keywords:  Crimean‐Congo hemorrhagic fever; LC‐MS/MS; amino acid; severity
    DOI:  https://doi.org/10.1002/jmv.29672
  9. bioRxiv. 2024 May 05. pii: 2024.05.04.592520. [Epub ahead of print]
      Clear cell renal cell carcinomas (ccRCC) are largely driven by HIF2α and are avid consumers of glutamine. However, inhibitors of glutaminase1 (GLS1), the first step in glutaminolysis, have not shown benefit in phase III trials, and HIF2α inhibition, recently FDA-approved for treatment of ccRCC, shows great but incomplete benefits, underscoring the need to better understand the roles of glutamine and HIF2α in ccRCC. Here, we report that glutamine deprivation rapidly redistributes GLS1 into isolated clusters within mitochondria across diverse cell types, excluding ccRCC. GLS1 clustering is rapid (1-3 hours) and reversible, is specifically driven by the level of intracellular glutamate, and is mediated by mitochondrial fission. Clustered GLS1 has markedly enhanced glutaminase activity and promotes cell death under glutamine-deprived conditions. We further show that HIF2α prevents GLS1 clustering, independently of its transcriptional activity, thereby protecting ccRCC cells from cell death induced by glutamine deprivation. Reversing this protection, by genetic expression of GLS1 mutants that constitutively cluster, enhances ccRCC cell death in culture and suppresses ccRCC growth in vivo . These finding provide multiple insights into cellular glutamine handling, including a novel metabolic pathway by which HIF2α promotes ccRCC, and reveals a potential therapeutic avenue to synergize with HIF2α inhibition in the treatment of ccRCC.
    DOI:  https://doi.org/10.1101/2024.05.04.592520
  10. Int J Biol Macromol. 2024 May 13. pii: S0141-8130(24)03169-6. [Epub ahead of print]270(Pt 1): 132364
      The mitochondrial inner membrane contains some hydrophobic proteins that mediate the exchange of metabolites between the mitochondrial matrix and the cytosol. Ctp1 and Yhm2 are two carrier proteins in the yeast Saccharomyces cerevisiae responsible for the transport of citrate, a tricarboxylate involved in several metabolic pathways. Since these proteins also contribute to respiratory metabolism, in this study we investigated for the first time whether changes in citrate transport can affect the structural organization and functional properties of respiratory complexes. Through experiments in yeast mutant cells in which the gene encoding Ctp1 or Yhm2 was deleted, we found that in the absence of either mitochondrial citrate transporter, mitochondrial respiration was impaired. Structural analysis of the respiratory complexes III and IV revealed different expression levels of the catalytic and supernumerary subunits in the Δctp1 and Δyhm2 strains. In addition, Δyhm2 mitochondria appeared to be more sensitive than Δctp1 to the oxidative damage. Our results provide the first evidence for a coordinated modulation of mitochondrial citrate transport and respiratory chain activity in S. cerevisiae metabolism.
    Keywords:  Carrier; Citrate; Mitochondria; Respiratory chain; Respiratory complexes
    DOI:  https://doi.org/10.1016/j.ijbiomac.2024.132364
  11. Front Immunol. 2024 ;15 1371708
      Impaired metabolism is recognized as an important contributor to pathogenicity of T cells in Systemic Lupus Erythematosus (SLE). Over the last two decades, we have acquired significant knowledge about the signaling and transcriptomic programs related to metabolic rewiring in healthy and SLE T cells. However, our understanding of metabolic network activity derives largely from studying metabolic pathways in isolation. Here, we argue that enzymatic activities are necessarily coupled through mass and energy balance constraints with in-built network-wide dependencies and compensation mechanisms. Therefore, metabolic rewiring of T cells in SLE must be understood in the context of the entire network, including changes in metabolic demands such as shifts in biomass composition and cytokine secretion rates as well as changes in uptake/excretion rates of multiple nutrients and waste products. As a way forward, we suggest cell physiology experiments and integration of orthogonal metabolic measurements through computational modeling towards a comprehensive understanding of T cell metabolism in lupus.
    Keywords:  CD4 T cell; flux balance analysis; lupus; metabolic network; multiomic analyses
    DOI:  https://doi.org/10.3389/fimmu.2024.1371708
  12. bioRxiv. 2024 Apr 29. pii: 2024.04.27.591477. [Epub ahead of print]
      NADPH, a highly compartmentalized electron donor in mammalian cells, plays essential roles in cell metabolism. However, little is known about how cytosolic and mitochondrial NADPH dynamics relate to cancer cell growth rates in response to varying nutrient conditions. To address this issue, we present NADPH composite index analysis, which quantifies the relationship between compartmentalized NADPH dynamics and growth rates using genetically encoded NADPH sensors, automated image analysis pipeline, and correlation analysis. Through this analysis, we demonstrated that compartmentalized NADPH dynamics patterns were cancer cell-type dependent. Specifically, cytosolic and mitochondrial NADPH dynamics of MDA-MB-231 decreased in response to serine deprivation, while those of HCT-116 increased in response to serine or glutamine deprivation. Furthermore, by introducing a fractional contribution parameter, we correlated cytosolic and mitochondrial NADPH dynamics to growth rates. Using this parameter, we identified cancer cell lines whose growth rates were selectively inhibited by targeting cytosolic or mitochondrial NADPH metabolism. Mechanistically, we identified citrate transporter as a key mitochondrial transporter that maintains compartmentalized NADPH dynamics and growth rates. Altogether, our results present a significant advance in quantifying the relationship between compartmentalized NADPH dynamics and cancer cell growth rates, highlighting a potential of targeting compartmentalized NADPH metabolism for selective cancer cell growth inhibitions.
    DOI:  https://doi.org/10.1101/2024.04.27.591477
  13. bioRxiv. 2024 May 03. pii: 2024.04.30.591879. [Epub ahead of print]
      Cells regulate their shape and metabolic activity in response to the mechano-chemical properties of their microenvironment. To elucidate the impact of matrix stiffness and ligand density on a cell's bioenergetics, we developed a non-equilibrium, active chemo-mechanical model that accounts for mechanical energy of the cell and matrix, chemical energy from ATP hydrolysis, interfacial energy, and mechano-sensitive regulation of stress fiber assembly through signaling. By integrating the kinetics and energetics of these processes we introduce the concept of the metabolic potential of the cell that, when minimized, gives experimentally testable predictions of the cell contractility, shape, and the ATP consumption. Specifically, we show that MDA-MB-231 breast cancer cells in 3D collagen gels follow a spherical to spindle to spherical change in morphology with increasing matrix stiffness consistent with experimental observations. This biphasic transition in cell shape emerges from a competition between increased contractility accompanied by ATP hydrolysis enabled by mechano-sensitive signaling, which lowers the volumetric contribution to the metabolic potential of elongated cells and the interfacial energy which is lower for spherical shapes. On 2D hydrogels, our model predicts a hemispherical to spindle to disc shape transition with increasing gel stiffness. In both cases, we show that increasing matrix stiffness monotonically increases the cell's contractility as well as ATP consumption. Our model also predicts how the increased energy demand in stiffer microenvironments is met by AMPK activation, which is confirmed through experimental measurement of activated AMPK levels as a function of matrix stiffness carried out here in both 2D and 3D micro-environments. Further, model predictions of increased AMPK activation on stiffer micro-environments are found to correlate strongly with experimentally measured upregulation of mitochondrial potential, glucose uptake and ATP levels. The insights from our model can be used to understand mechanosensitive regulation of metabolism in physiological events such as metastasis and tumor progression during which cells experience dynamic changes in their microenvironment and metabolic state.
    DOI:  https://doi.org/10.1101/2024.04.30.591879
  14. Aging Cell. 2024 May 16. e14165
      Impaired mitochondrial function is a hallmark of aging and a major contributor to neurodegenerative diseases. We have shown that disrupted mitochondrial dynamics typically found in aging alters the fate of neural stem cells (NSCs) leading to impairments in learning and memory. At present, little is known regarding the mechanisms by which neural stem and progenitor cells survive and adapt to mitochondrial dysfunction. Using Opa1-inducible knockout as a model of aging and neurodegeneration, we identify a decline in neurogenesis due to impaired stem cell activation and progenitor proliferation, which can be rescued by the mitigation of oxidative stress through hypoxia. Through sc-RNA-seq, we identify the ATF4 pathway as a critical mechanism underlying cellular adaptation to metabolic stress. ATF4 knockdown in Opa1-deficient NSCs accelerates cell death, while the increased expression of ATF4 enhances proliferation and survival. Using a Slc7a11 mutant, an ATF4 target, we show that ATF4-mediated glutathione production plays a critical role in maintaining NSC survival and function under stress conditions. Together, we show that the activation of the integrated stress response (ISR) pathway enables NSCs to adapt to metabolic stress due to mitochondrial dysfunction and metabolic stress and may serve as a therapeutic target to enhance NSC survival and function in aging and neurodegeneration.
    Keywords:  Hypoxia; Opa1; adult neurogenesis; intergrated stress response; metabolic adaptation; mitochondrial dynamics; neurodegeneration
    DOI:  https://doi.org/10.1111/acel.14165
  15. Nucleosides Nucleotides Nucleic Acids. 2024 May 14. 1-15
      Glutamine amidotransferases (GATs) catalyze the synthesis of nucleotides, amino acids, glycoproteins and an enzyme cofactor, thus serving as key metabolic enzymes for cell proliferation. Carbamoyl-phosphate synthetase, Aspartate transcarbamoylase, and Dihydroorotase (CAD) is a multifunctional enzyme of the GAT family and catalyzes the first three steps of the de novo pyrimidine synthesis. Following our findings that cellular GATs are involved in immune evasion during herpesvirus infection, we discovered that CAD reprograms cellular metabolism to fuel aerobic glycolysis and nucleotide synthesis via deamidating RelA. Deamidated RelA activates the expression of key glycolytic enzymes, rather than that of the inflammatory NF-κB-responsive genes. As such, cancer cells prime RelA for deamidation via up-regulating CAD activity or accumulating RelA mutations. Interestingly, the recently emerged SARS-CoV-2 also activates CAD to couple evasion of inflammatory response to activated nucleotide synthesis. A small molecule inhibitor of CAD depletes nucleotide supply and boosts antiviral inflammatory response, thus greatly reducing SARS-CoV-2 replication. Additionally, we also found that CTP synthase 1 (CTPS1) deamidates interferon (IFN) regulatory factor 3 (IRF3) to mute IFN induction. Our previous studies have implicated phosphoribosyl formylglycinamidine synthase (PFAS) and phosphoribosyl pyrophosphate amidotransferase (PPAT) in deamidating retinoic acid-inducible gene I (RIG-I) and evading dsRNA-induced innate immune defense in herpesvirus infection. Overall, these studies have uncovered an unconventional enzymatic activity of cellular GATs in metabolism and immune defense, offering a molecular link intimately coupling these fundamental biological processes.
    Keywords:  Glutamine amidotransferase; innate immunity; nucleotide synthesis; protein deamidation; tumor metabolism; viral infection
    DOI:  https://doi.org/10.1080/15257770.2024.2351135
  16. Proc Natl Acad Sci U S A. 2024 May 21. 121(21): e2314604121
      We developed a significantly improved genetically encoded quantitative adenosine triphosphate (ATP) sensor to provide real-time dynamics of ATP levels in subcellular compartments. iATPSnFR2 is a variant of iATPSnFR1, a previously developed sensor that has circularly permuted superfolder green fluorescent protein (GFP) inserted between the ATP-binding helices of the ε-subunit of a bacterial F0-F1 ATPase. Optimizing the linkers joining the two domains resulted in a ~fivefold to sixfold improvement in the dynamic range compared to the previous-generation sensor, with excellent discrimination against other analytes, and affinity variants varying from 4 µM to 500 µM. A chimeric version of this sensor fused to either the HaloTag protein or a suitable spectrally separated fluorescent protein provides an optional ratiometric readout allowing comparisons of ATP across cellular regions. Subcellular targeting the sensor to nerve terminals reveals previously uncharacterized single-synapse metabolic signatures, while targeting to the mitochondrial matrix allowed direct quantitative probing of oxidative phosphorylation dynamics.
    Keywords:  ATP; fluorescent sensor; neuronal metabolism
    DOI:  https://doi.org/10.1073/pnas.2314604121
  17. Int J Mol Sci. 2024 Apr 23. pii: 4581. [Epub ahead of print]25(9):
      Understanding the molecular underpinnings of neurodegeneration processes is a pressing challenge for medicine and neurobiology. Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent forms of neurodegeneration. To date, a substantial body of experimental evidence has strongly implicated hypoxia in the pathogenesis of numerous neurological disorders, including AD, PD, and other age-related neurodegenerative conditions. Hypoxia-inducible factor (HIF) is a transcription factor that triggers a cell survival program in conditions of oxygen deprivation. The involvement of HIF-1α in neurodegenerative processes presents a complex and sometimes contradictory picture. This review aims to elucidate the current understanding of the interplay between hypoxia and the development of AD and PD, assess the involvement of HIF-1 in their pathogenesis, and summarize promising therapeutic approaches centered on modulating the activity of the HIF-1 complex.
    Keywords:  Alzheimer’s disease; HIF-1; PHD; Parkinson’s disease; hypoxia; neurodegeneration; neuroprotection
    DOI:  https://doi.org/10.3390/ijms25094581
  18. Proc Natl Acad Sci U S A. 2024 May 21. 121(21): e2400740121
      The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.
    Keywords:  cytosolic iron-sulfur protein assembly (CIA); glutaredoxin; glutathione (GSH); iron homeostasis; iron-sulfur cluster assembly (ISC)
    DOI:  https://doi.org/10.1073/pnas.2400740121
  19. Int J Mol Sci. 2024 Apr 29. pii: 4855. [Epub ahead of print]25(9):
      Mitochondrial diseases (MDs) affect 4300 individuals, with different ages of presentation and manifestation in any organ. How defects in mitochondria can cause such a diverse range of human diseases remains poorly understood. In recent years, several published research articles regarding the metabolic and protein profiles of these neurogenetic disorders have helped shed light on the pathogenetic mechanisms. By investigating different pathways in MDs, often with the aim of identifying disease biomarkers, it is possible to identify molecular processes underlying the disease. In this perspective, omics technologies such as proteomics and metabolomics considered in this review, can support unresolved mitochondrial questions, helping to improve outcomes for patients.
    Keywords:  FTIR; LC-MS; biomarkers; metabolomics; mitochondrial diseases; personalized medicine; proteomics
    DOI:  https://doi.org/10.3390/ijms25094855
  20. Curr Protoc. 2024 May;4(5): e1048
      Both Ca2+ and protein kinase A (PKA) are multifaceted and ubiquitous signaling molecules, essential for regulating the intricate network of signaling pathways. However, their dynamics within specialized membrane regions are still not well characterized. By using genetically encoded fluorescent indicators specifically targeted to distinct plasma membrane microdomains, we have established a protocol that permits observing Ca2+/PKA dynamics in discrete neuronal microdomains with high spatial and temporal resolution. The approach employs a fluorescence microscope with a sensitive camera and a dedicated CFP/YFP/mCherry filter set, enabling the simultaneous detection of donor-acceptor emission and red fluorescence signal. In this detailed step-by-step guide, we outline the experimental procedure, including isolation of rat primary neurons and their transfection with biosensors targeted to lipid rafts or non-raft regions of plasma membrane. We provide information on the necessary equipment and imaging setup required for recording, along with highlighting critical parameters and troubleshooting guidelines for real-time measurements. Finally, we provide examples of the observed Ca2+ and PKA changes in specific cellular compartments. The application of this technique may have significant implications for studying cross-talk between second messengers and their alterations in various pathological conditions. © 2024 Wiley Periodicals LLC.
    Keywords:  Förster resonance energy transfer (FRET); calcium; compartmentalization; plasma membrane microdomains; primary neurons; protein kinase A (PKA)
    DOI:  https://doi.org/10.1002/cpz1.1048
  21. J Cell Biol. 2024 Jul 01. pii: e202310134. [Epub ahead of print]223(7):
      Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).
    DOI:  https://doi.org/10.1083/jcb.202310134
  22. Nat Rev Gastroenterol Hepatol. 2024 May 13.
      Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
    DOI:  https://doi.org/10.1038/s41575-024-00931-2
  23. iScience. 2024 May 17. 27(5): 109808
      Mitochondrial dynamics is a process that balances fusion and fission events, the latter providing a mechanism for segregating dysfunctional mitochondria. Fission is controlled by the mitochondrial membrane potential (ΔΨm), optic atrophy 1 (OPA1) cleavage, and DRP1 recruitment. It is thought that this process is closely linked to the activity of the mitochondrial respiratory chain (MRC). However, we report here that MRC inhibition does not decrease ΔΨm nor increase fission, as evidenced by hyperconnected mitochondria. Conversely, blocking F0F1-ATP synthase activity induces fragmentation. We show that the F0F1-ATP synthase is sensing the inhibition of MRC activity by immediately promoting its reverse mode of action to hydrolyze matrix ATP and restoring ΔΨm, thus preventing fission. While this reverse mode is expected to be inhibited by the ATPase inhibitor ATPIF1, we show that this sensing is independent of this factor. We have unraveled an unexpected role of F0F1-ATP synthase in controlling the induction of fission by sensing and maintaining ΔΨm.
    Keywords:  Biochemistry; Cell biology; Functional aspects of cell biology
    DOI:  https://doi.org/10.1016/j.isci.2024.109808
  24. Sci Adv. 2024 May 17. 10(20): eadn2867
      Mitochondrial dysfunction is the pivotal driving factor of multiple inflammatory diseases, and targeting mitochondrial biogenesis represents an efficacious approach to ameliorate such dysfunction in inflammatory diseases. Here, we demonstrated that phosphoglycerate dehydrogenase (PHGDH) deficiency promotes mitochondrial biogenesis in inflammatory macrophages. Mechanistically, PHGDH deficiency boosts mitochondrial reactive oxygen species (mtROS) by suppressing cytoplasmic glutathione synthesis. mtROS provokes hypoxia-inducible factor-1α signaling to direct nuclear specificity protein 1 and nuclear respiratory factor 1 transcription. Moreover, myeloid Phgdh deficiency reverses diet-induced obesity. Collectively, this study reveals that a mechanism involving de novo serine synthesis orchestrates mitochondrial biogenesis via mitochondrial-to-nuclear communication, and provides a potential therapeutic target for tackling inflammatory diseases and mitochondria-mediated diseases.
    DOI:  https://doi.org/10.1126/sciadv.adn2867
  25. Nat Commun. 2024 May 15. 15(1): 4115
      RyR1 is an intracellular Ca2+ channel important in excitable cells such as neurons and muscle fibers. Ca2+ activates it at low concentrations and inhibits it at high concentrations. Mg2+ is the main physiological RyR1 inhibitor, an effect that is overridden upon activation. Despite the significance of Mg2+-mediated inhibition, the molecular-level mechanisms remain unclear. In this work we determined two cryo-EM structures of RyR1 with Mg2+ up to 2.8 Å resolution, identifying multiple Mg2+ binding sites. Mg2+ inhibits at the known Ca2+ activating site and we propose that the EF hand domain is an inhibitory divalent cation sensor. Both divalent cations bind to ATP within a crevice, contributing to the precise transmission of allosteric changes within the enormous channel protein. Notably, Mg2+ inhibits RyR1 by interacting with the gating helices as validated by molecular dynamics. This structural insight enhances our understanding of how Mg2+ inhibition is overcome during excitation.
    DOI:  https://doi.org/10.1038/s41467-024-48292-3
  26. FEBS Lett. 2024 May 15.
      Molecular oxygen is a stable diradical. All O2-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O2 started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O2-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O2-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O2-dependent, hence O2-tolerant, alternative pathways for O2-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD+, pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O2-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.
    Keywords:  aerobic metabolism; evolution of aerobes; evolution of respiration; great oxidation event; lateral gene transfer; oxygen inhibition
    DOI:  https://doi.org/10.1002/1873-3468.14906
  27. Free Radic Biol Med. 2024 May 09. pii: S0891-5849(24)00446-5. [Epub ahead of print]220 192-206
      Enhanced formation of advanced glycation end products (AGEs) is a pivotal factor in diabetes pathophysiology, increasing the risk of diabetic complications. Nε-carboxy-methyl-lysine (CML) is one of the most relevant AGEs found in several tissues including the peripheral blood of diabetic subjects. Despite recognizing diabetes as a risk factor for neurodegenerative diseases and the documented role of mitochondrial abnormalities in this connection, the impact of CML on neuronal mitochondria and its contribution to diabetes-related neurodegeneration remain uncertain. Here, we evaluated the effects of CML in differentiated SH-SY5Y human neuroblastoma cells. Due to the association between mitochondrial dysfunction and increased production of reactive oxygen species (ROS), the possible protective effects of MitoTempo, a mitochondria-targeted antioxidant, were also evaluated. Several parameters were assessed namely cells viability, mitochondrial respiration and membrane potential, ATP and ROS production, Ca2+ levels, mitochondrial biogenesis and dynamics, mito/autophagy, endoplasmic reticulum (ER) stress and amyloidogenic and synaptic integrity markers. CML caused pronounced mitochondrial defects characterized by a significant decrease in mitochondrial respiration, membrane potential, and ATP production and an increase in ROS production. An accumulation of individual mitochondria associated with disrupted mitochondrial networks was also observed. Furthermore, CML caused mitochondrial fusion and a decrease in mitochondrial mass and induced ER stress associated with altered unfolded protein response and Ca2+ dyshomeostasis. Moreover, CML increased the protein levels of β-secretase-1 and amyloid precursor protein, key proteins involved in Alzheimer's Disease pathophysiology. All these effects contributed to the decline in neuronal cells viability. Notable, MitoTempo was able to counteract most of CML-mediated mitochondrial defects and neuronal cells injury and death. Overall, these findings suggest that CML induces pronounced defects in neuronal mitochondria and ER stress, predisposing to neurodegenerative events. More, our observations suggest that MitoTempo holds therapeutic promise in mitigating CML-induced mitochondrial imbalance and neuronal damage and death.
    Keywords:  MitoTempo; Mitochondrial defects; Neurodegeneration; Neuroprotection; Nε-carboxymethyl lysine
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2024.05.011
  28. Cell Chem Biol. 2024 May 16. pii: S2451-9456(24)00169-7. [Epub ahead of print]31(5): 932-943.e8
      Nucleotides perform important metabolic functions, carrying energy and feeding nucleic acid synthesis. Here, we use isotope tracing-mass spectrometry to quantitate contributions to purine nucleotides from salvage versus de novo synthesis. We further explore the impact of augmenting a key precursor for purine synthesis, one-carbon (1C) units. We show that tumors and tumor-infiltrating T cells (relative to splenic or lymph node T cells) synthesize purines de novo. Shortage of 1C units for T cell purine synthesis is accordingly a potential bottleneck for anti-tumor immunity. Supplementing 1C units by infusing formate drives formate assimilation into purines in tumor-infiltrating T cells. Orally administered methanol functions as a formate pro-drug, with deuteration enabling kinetic control of formate production. Safe doses of methanol raise formate levels and augment anti-PD-1 checkpoint blockade in MC38 tumors, tripling durable regressions. Thus, 1C deficiency can gate antitumor immunity and this metabolic checkpoint can be overcome with pharmacological 1C supplementation.
    DOI:  https://doi.org/10.1016/j.chembiol.2024.04.007
  29. EMBO J. 2024 May 15.
      Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.
    Keywords:  Glycolysis Shunts; Histidine Kinase; Phosphoglycerate Mutase 1 (PGAM1); Phosphorylation; Pyruvate Kinase M2 (PKM2)
    DOI:  https://doi.org/10.1038/s44318-024-00110-8