Proc Natl Acad Sci U S A. 2025 Nov 25. 122(47): e2505046122
Glycation, the nonenzymatic attachment of reactive dicarbonyls to proteins, lipids, or nucleic acids, contributes to the formation of advanced glycation end-products (AGEs). In Alzheimer's disease (AD), amyloid-beta (Aβ) undergoes posttranslational glycation to produce glycated Aβ (gAβ), yet its pathological role remains poorly understood. Here, we demonstrate that gAβ promotes neuronal mitochondrial DNA (mtDNA) efflux via a VDAC1-dependent mechanism, activating the innate immune cGAS-STING pathway. Using aged AD mice and human AD brain samples, we observed cGAS-mtDNA binding and cGAS-STING activation in the neuronal cytoplasm. Knockdown of RAGE, cGAS, or STING, as well as pharmacological inhibition of VDAC1, protected APP mice from mitochondrial dysfunction and Alzheimer's-like pathology. Neuron-specific cGAS knockdown confirmed its pivotal role in driving neuroinflammation and cognitive deficits. Treatment with ALT-711, an AGE cross-link breaker, alleviated gAβ-associated pathology. Furthermore, RAGE inhibition in APP knock-in mice suppressed innate immune activation and disease-associated gene expression, as revealed by spatially resolved transcriptomics. Collectively, our findings establish a mechanistic link between gAβ and innate immune activation, identifying VDAC1, the AGE-RAGE axis, and the cGAS-STING pathway as promising therapeutic targets in AD.
Keywords: Alzheimer’s disease; glycated amyloid-beta; innate immunity; mitochondrial DNA