bims-cesemi Biomed News
on Cellular senescence and mitochondria
Issue of 2024‒08‒18
fifteen papers selected by
Julio Cesar Cardenas, Universidad Mayor



  1. Cell. 2024 Aug 08. pii: S0092-8674(24)00640-8. [Epub ahead of print]187(16): 4150-4175
      Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.
    Keywords:  aging; humans; in vivo; mouse; senescence; senotherapy
    DOI:  https://doi.org/10.1016/j.cell.2024.05.059
  2. J Cell Biol. 2024 Oct 07. pii: e202304031. [Epub ahead of print]223(10):
      Mitochondrial functions can be regulated by membrane contact sites with the endoplasmic reticulum (ER). These mitochondria-ER contact sites (MERCs) are functionally heterogeneous and maintained by various tethers. Here, we found that REEP5, an ER tubule-shaping protein, interacts with Mitofusins 1/2 to mediate mitochondrial distribution throughout the cytosol by a new transport mechanism, mitochondrial "hitchhiking" with tubular ER on microtubules. REEP5 depletion led to reduced tethering and increased perinuclear localization of mitochondria. Conversely, increasing REEP5 expression facilitated mitochondrial distribution throughout the cytoplasm. Rapamycin-induced irreversible REEP5-MFN1/2 interaction led to mitochondrial hyperfusion, implying that the dynamic release of mitochondria from tethering is necessary for normal mitochondrial distribution and dynamics. Functionally, disruption of MFN2-REEP5 interaction dynamics by forced dimerization or silencing REEP5 modulated the production of mitochondrial reactive oxygen species (ROS). Overall, our results indicate that dynamic REEP5-MFN1/2 interaction mediates cytosolic distribution and connectivity of the mitochondrial network by "hitchhiking" and this process regulates mitochondrial ROS, which is vital for multiple physiological functions.
    DOI:  https://doi.org/10.1083/jcb.202304031
  3. bioRxiv. 2024 Aug 13. pii: 2024.08.05.606704. [Epub ahead of print]
      Mfn2 is a mitochondrial outer membrane fusion protein with the additional role of tethering mitochondria to the ER. Here, we describe a novel connection between Mfn2 and calcium release from mitochondria. We show that Mfn2 controls the mitochondrial inner membrane sodium-calcium exchange protein NCLX, which is a major source for calcium release from mitochondria. This discovery was made with the fungal toxin Phomoxanthone (PXA), which induces calcium release from mitochondria. PXA-induced calcium release is blocked by a chemical inhibitor of NCLX, while NCLX and Mfn2 deletions both also prevent PXA-induced calcium release. CETSA experiments show that PXA directly targets Mfn2, which likely controls NCLX through physical interactions since co-immunoprecipitation and proximity ligation assays show increased association between Mfn2 and NCLX upon treatment with PXA. Interactions between Mfn2 and NCLX also increase when cells are treated with mitochondrial ROS-inducing conditions, such as oligomycin treatment of respiring cells, while the interactions do not increase in Oma1 -/- cells. It seems likely that opening of cristae by Oma1-mediated cleavage of Opa1 promotes translocation of NCLX from cristae to the rim where it can come into contact with Mfn2 thus promoting PXA-induced calcium release from mitochondria. These results therefore delineate a pathway that connects ROS produced inside mitochondria with calcium release and signaling in the cytosol.
    DOI:  https://doi.org/10.1101/2024.08.05.606704
  4. Aging Cell. 2024 Aug 15. e14315
      The intricate interplay between cellular senescence and alterations in the gut microbiome emerges as a pivotal axis in the aging process, increasingly recognized for its contribution to systemic inflammation, physiological decline, and predisposition to age-associated diseases. Cellular senescence, characterized by a cessation of cell division in response to various stressors, induces morphological and functional changes within tissues. The complexity and heterogeneity of senescent cells, alongside the secretion of senescence-associated secretory phenotype, exacerbate the aging process through pro-inflammatory pathways and influence the microenvironment and immune system. Concurrently, aging-associated changes in gut microbiome diversity and composition contribute to dysbiosis, further exacerbating systemic inflammation and undermining the integrity of various bodily functions. This review encapsulates the burgeoning research on the reciprocal relationship between cellular senescence and gut dysbiosis, highlighting their collective impact on age-related musculoskeletal diseases, including osteoporosis, sarcopenia, and osteoarthritis. It also explores the potential of modulating the gut microbiome and targeting cellular senescence as innovative strategies for healthy aging and mitigating the progression of aging-related conditions. By exploring targeted interventions, including the development of senotherapeutic drugs and probiotic therapies, this review aims to shed light on novel therapeutic avenues. These strategies leverage the connection between cellular senescence and gut microbiome alterations to advance aging research and development of interventions aimed at extending health span and improving the quality of life in the older population.
    Keywords:  aging; cellular senescence; gut microbiome; musculoskeletal diseases; senotherapeutics
    DOI:  https://doi.org/10.1111/acel.14315
  5. bioRxiv. 2024 Aug 09. pii: 2024.08.08.607195. [Epub ahead of print]
      Endoplasmic reticulum to mitochondria Ca 2+ transfer is important for cancer cell survival, but the role of mitochondrial Ca 2+ uptake through the mitochondrial Ca 2+ uniporter (MCU) in pancreatic adenocarcinoma (PDAC) is poorly understood. Here, we show that increased MCU expression is associated with malignancy and poorer outcomes in PDAC patients. In isogenic murine PDAC models, Mcu deletion ( Mcu KO ) ablated mitochondrial Ca 2+ uptake, which reduced proliferation and inhibited self-renewal. Orthotopic implantation of MCU-null tumor cells reduced primary tumor growth and metastasis. Mcu deletion reduced the cellular plasticity of tumor cells by inhibiting epithelial-to-mesenchymal transition (EMT), which contributes to metastatic competency in PDAC. Mechanistically, the loss of mitochondrial Ca 2+ uptake reduced expression of the key EMT transcription factor Snail and secretion of the EMT-inducing ligand TGFβ. Snail re-expression and TGFβ treatment rescued deficits in Mcu KO cells and restored their metastatic ability. Thus, MCU may present a therapeutic target in PDAC to limit cancer-cell-induced EMT and metastasis.
    DOI:  https://doi.org/10.1101/2024.08.08.607195
  6. Exp Eye Res. 2024 Aug 08. pii: S0014-4835(24)00250-1. [Epub ahead of print] 110029
      Dysregulation of calcium homeostasis can precipitate a cascade of pathological events that lead to tissue damage and cell death. Dynasore is a small molecule that inhibits endocytosis by targeting classic dynamins. In a previous study, we showed that dynasore can protect human corneal epithelial cells from damage due to tert-butyl hydroperoxide (tBHP) exposure by restoring cellular calcium (Ca2+) homeostasis. Here we report results of a follow-up study aimed at identifying the source of the damaging Ca2+. Store-operated Ca2+ entry (SOCE) is a cellular mechanism to restore intracellular calcium stores from the extracellular milieu. We found that dynasore effectively blocks SOCE in cells treated with thapsigargin (TG), a small molecule that inhibits pumping of Ca2+ into the endoplasmic reticulum (ER). Unlike dynasore however, SOCE inhibitor YM-58483 did not interfere with the cytosolic Ca2+ overload caused by tBHP exposure. We also found that dynasore effectively blocks Ca2+ release from internal sources. The inefficacy of inhibitors of ER Ca2+ channels suggested that this compartment was not the source of the Ca2+ surge caused by tBHP exposure. However, using a Ca2+-measuring organelle-entrapped protein indicator (CEPIA) reporter targeted to mitochondria, we found that dynasore can block mitochondrial Ca2+ release due to tBHP exposure. Our results suggest that dynasore exerts multiple effects on cellular Ca2+ homeostasis, with inhibition of mitochondrial Ca2+ release playing a key role in protection of corneal epithelial cells against oxidative stress due to tBHP exposure.
    Keywords:  Calcium; Cornea; Dynasore; Endocytosis; Epithelial cell; Homeostasis; Mitochondria; Oxidative Stress
    DOI:  https://doi.org/10.1016/j.exer.2024.110029
  7. Nature. 2024 Aug 14.
      Fasting is associated with a range of health benefits1-6. How fasting signals elicit changes in the proteome to establish metabolic programmes remains poorly understood. Here we show that hepatocytes selectively remodel the translatome while global translation is paradoxically downregulated during fasting7,8. We discover that phosphorylation of eukaryotic translation initiation factor 4E (P-eIF4E) is induced during fasting. We show that P-eIF4E is responsible for controlling the translation of genes involved in lipid catabolism and the production of ketone bodies. Inhibiting P-eIF4E impairs ketogenesis in response to fasting and a ketogenic diet. P-eIF4E regulates those messenger RNAs through a specific translation regulatory element within their 5' untranslated regions (5' UTRs). Our findings reveal a new signalling property of fatty acids, which are elevated during fasting. We found that fatty acids bind and induce AMP-activated protein kinase (AMPK) kinase activity that in turn enhances the phosphorylation of MAP kinase-interacting protein kinase (MNK), the kinase that phosphorylates eIF4E. The AMPK-MNK-eIF4E axis controls ketogenesis, revealing a new lipid-mediated kinase signalling pathway that links ketogenesis to translation control. Certain types of cancer use ketone bodies as an energy source9,10 that may rely on P-eIF4E. Our findings reveal that on a ketogenic diet, treatment with eFT508 (also known as tomivosertib; a P-eIF4E inhibitor) restrains pancreatic tumour growth. Thus, our findings unveil a new fatty acid-induced signalling pathway that activates selective translation, which underlies ketogenesis and provides a tailored diet intervention therapy for cancer.
    DOI:  https://doi.org/10.1038/s41586-024-07781-7
  8. Front Cell Dev Biol. 2024 ;12 1434381
      Alcohol, a toxic and psychoactive substance with addictive properties, severely impacts life quality, leading to significant health, societal, and economic consequences. Its rapid passage across the blood-brain barrier directly affects different brain cells, including astrocytes. Our recent findings revealed the involvement of pannexin-1 (Panx1) and connexin-43 (Cx43) hemichannels in ethanol-induced astrocyte dysfunction and death. However, whether ethanol influences mitochondrial function and morphology in astrocytes, and the potential role of hemichannels in this process remains poorly understood. Here, we found that ethanol reduced basal mitochondrial Ca2+ but exacerbated thapsigargin-induced mitochondrial Ca2+ dynamics in a concentration-dependent manner, as evidenced by Rhod-2 time-lapse recordings. Similarly, ethanol-treated astrocytes displayed increased mitochondrial superoxide production, as indicated by MitoSox labeling. These effects coincided with reduced mitochondrial membrane potential and increased mitochondrial fragmentation, as determined by MitoRed CMXRos and MitoGreen quantification, respectively. Crucially, inhibiting both Cx43 and Panx1 hemichannels effectively prevented all ethanol-induced mitochondrial abnormalities in astrocytes. We speculate that exacerbated hemichannel activity evoked by ethanol may impair intracellular Ca2+ homeostasis, stressing mitochondrial Ca2+ with potentially damaging consequences for mitochondrial fusion and fission dynamics and astroglial bioenergetics.
    Keywords:  alcoholism; astrocyte; connexin 43; hemichannels; mitochondria; pannexin-1
    DOI:  https://doi.org/10.3389/fcell.2024.1434381
  9. Trends Endocrinol Metab. 2024 Aug 08. pii: S1043-2760(24)00197-8. [Epub ahead of print]
      The success of disseminating cancer cells (DTCs) at specific metastatic sites is influenced by several metabolic factors. Even before DTCs arrival, metabolic conditioning from the primary tumor participates in creating a favorable premetastatic niche at distant organs. In addition, DTCs adjust their metabolism to better survive along the metastatic journey and successfully colonize their ultimate destination. However, the idea that the environment of the target organs may metabolically impact the metastatic fate is often underestimated. Here, we review the coexistence of two distinct strategies by which cancer cells shape and/or adapt to the metabolic profile of colonized tissues, ultimately creating a proper soil for their seeding and proliferation.
    Keywords:  metabolic adaptation; metastatic niche; nutrient availability; organotropism; tissue metabolism
    DOI:  https://doi.org/10.1016/j.tem.2024.07.016
  10. Aging Cell. 2024 Aug 09. e14294
      Osteoarthritis (OA) is widely recognized as the prevailing joint disease associated with aging. The ketogenic diet (KD) has been postulated to impede the advancement of various inflammatory ailments. β-Hydroxybutyrate (βOHB), a prominent constituent of ketone bodies, has recently been proposed to possess crucial signaling capabilities. In this study, we propose to explore the role and mechanism of βOHB in OA. Tissue staining and inflammatory factor assay were employed to evaluate the impacts of KD and βOHB on OA rats. The oxidative stress conditions in chondrocytes were induced using tert-butyl hydroperoxide (TBHP). The mechanisms were determined using the siRNA of hydroxycarboxylic acid receptor 2 (HCAR2), the antagonist of adenosine monophosphate-activated protein kinase (AMPK), and the inhibitor of mitophagy. The administration of KD demonstrated a reduction in pathological damage to cartilage, as well as a decrease in plasma levels of inflammatory factors. Furthermore, it resulted in an increase in the concentration of βOHB in the blood and synovial fluid. In vitro experiments showed that βOHB facilitated mitophagy and adenosine triphosphate production. Besides, βOHB mitigated chondrocyte senescence, inflammatory factors secretion, extracellular matrix degradation, and apoptosis induced by TBHP. Subsequent investigations indicated that the protective effects of βOHB were no longer observed following the knockdown of HCAR2, the antagonist of AMPK, or the inhibitor of mitophagy. Moreover, in vivo studies suggested that βOHB played a protective role by targeting the HCAR2-AMPK-PINK1 axis. In conclusion, βOHB enhanced chondrocyte mitophagy through the HCAR2/AMPK/PINK1/Parkin pathway, offering a potential therapeutic approach for the treatment of OA.
    Keywords:  hydroxycarboxylic acid receptor 2; mitophagy; osteoarthritis; senescence; β‐Hydroxybutyrate
    DOI:  https://doi.org/10.1111/acel.14294
  11. Cell Death Discov. 2024 Aug 15. 10(1): 366
      L-asparaginase is a standard therapeutic option for acute lymphoblastic leukemia (aLL), a hematologic cancer that claims the most lives of pediatric cancer patients. Previously, we demonstrated that L-asparaginase kills aLL cells via a lethal rise in [Ca2+]i due to IP3R-mediated ER Ca2+ release followed by calpain-1-Bid-caspase-3/12 activation (Blood, 133, 2222-2232). However, upstream targets of L-asparaginase that trigger IP3R-mediated ER Ca2+ release remain elusive. Here, we show that L-asparaginase targets µ-OR1 and PAR2 and induces IP3R-mediated ER Ca2+ release in aLL cells. In doing so, µ-OR1 plays a major role while PAR2 plays a minor role. Utilizing PAR2- and µ-OR1-knockdown cells, we demonstrate that L-asparaginase stimulation of µ-OR1 and PAR2 relays its signal via Gαi and Gαq, respectively. In PAR2-knockdown cells, stimulation of adenylate cyclase with forskolin or treatment with 8-CPT-cAMP reduces L-asparaginase-induced µ-OR1-mediated ER Ca2+ release, suggesting that activation of µ-OR1 negatively regulates AC and cAMP. In addition, the PKA inhibitor 14-22 amide (myr) alone evokes ER Ca2+ release, and subsequent L-asparaginase treatment does not induce further ER Ca2+ release, indicating the involvement of PKA inhibition in L-asparaginase-induced µ-OR1-mediated ER Ca2+ release, which can bypass the L-asparaginase-µ-OR1-AC-cAMP loop. This coincides with (a) the decreases in PKA-dependent inhibitory PLCβ3 Ser1105 phosphorylation, which prompts PLCβ3 activation and ER Ca2+ release, and (b) BAD Ser118 phosphorylation, which leads to caspase activation and apoptosis. Thus, our findings offer new insights into the Ca2+-mediated mechanisms behind L-asparaginase-induced aLL cell apoptosis and suggest that PKA may be targeted for therapeutic intervention for aLL.
    DOI:  https://doi.org/10.1038/s41420-024-02142-9
  12. bioRxiv. 2024 Aug 08. pii: 2024.08.07.607085. [Epub ahead of print]
      The endoplasmic reticulum (ER) comprises an array of structurally distinct subdomains, each with characteristic functions. While altered ER-associated processes are linked to age-onset pathogenesis, whether shifts in ER morphology underlie these functional changes is unclear. We report that ER remodeling is a conserved feature of the aging process in models ranging from yeast to C. elegans and mammals. Focusing on C. elegans as an exemplar of metazoan aging, we find that as animals age, ER mass declines in virtually all tissues and ER morphology shifts from rough sheets to tubular ER. The accompanying large-scale shifts in proteomic composition correspond to the ER turning from protein synthesis to lipid metabolism. To drive this substantial remodeling, ER-phagy is activated early in adulthood, promoting turnover of rough ER in response to rises in luminal protein-folding burden and reduced global protein synthesis. Surprisingly, ER remodeling is a pro-active and protective response during aging, as ER-phagy impairment limits lifespan in yeast and diverse lifespan-extending paradigms promote profound remodeling of ER morphology even in young animals. Altogether our results reveal ER-phagy and ER morphological dynamics as pronounced, underappreciated mechanisms of both normal aging and enhanced longevity.
    DOI:  https://doi.org/10.1101/2024.08.07.607085
  13. Autophagy. 2024 Aug 15.
      Lysosomes are essential degradative organelles and signaling hubs within cells, playing a crucial role in the regulation of macroautophagy/autophagy. Dysfunction of lysosomes and impaired autophagy are closely associated with the development of various neurodegenerative diseases. Enhancing lysosomal activity and boosting autophagy levels holds great promise as effective strategies for treating these diseases. However, there remains a lack of methods to dynamically regulate lysosomal activity and autophagy levels in living cells or animals. In our recent work, we applied optogenetics to manipulate lysosomal physiology and function, developing three lysosome-targeted optogenetic tools: lyso-NpHR3.0, lyso-ArchT, and lyso-ChR2. These new actuators enable light-dependent regulation of key aspects such as lysosomal membrane potential, lumenal pH, hydrolase activity, degradation processes, and Ca2+ dynamics in living cells. Notably, lyso-ChR2 activation induces autophagy via the MTOR pathway while it promotes Aβ clearance through autophagy induction in cellular models of Alzheimer disease. Furthermore, lyso-ChR2 activation reduces Aβ deposition and alleviates Aβ-induced paralysis in Caenorhabditis elegans models of Alzheimer disease. Our lysosomal optogenetic actuators offer a novel method for dynamically regulating lysosomal physiology and autophagic activity in living cells and animals.
    Keywords:  Alzheimer disease; MTOR; autophagy; lysosome; optogenetics
    DOI:  https://doi.org/10.1080/15548627.2024.2392464
  14. Nat Commun. 2024 Aug 12. 15(1): 6915
      Protein post-translational modifications (PTMs) are crucial for cancer cells to adapt to hypoxia; however, the functional significance of lysine crotonylation (Kcr) in hypoxia remains unclear. Herein we report a quantitative proteomics analysis of global crotonylome under normoxia and hypoxia, and demonstrate 128 Kcr site alterations across 101 proteins in MDA-MB231 cells. Specifically, we observe a significant decrease in K131cr, K156cr and K220cr of phosphoglycerate kinase 1 (PGK1) upon hypoxia. Enoyl-CoA hydratase 1 (ECHS1) is upregulated and interacts with PGK1, leading to the downregulation of PGK1 Kcr under hypoxia. Abolishment of PGK1 Kcr promotes glycolysis and suppresses mitochondrial pyruvate metabolism by activating pyruvate dehydrogenase kinase 1 (PDHK1). A low PGK1 K131cr level is correlated with malignancy and poor prognosis of breast cancer. Our findings show that PGK1 Kcr is a signal in coordinating glycolysis and the tricarboxylic acid (TCA) cycle and may serve as a diagnostic indicator for breast cancer.
    DOI:  https://doi.org/10.1038/s41467-024-51232-w
  15. Front Cell Dev Biol. 2024 ;12 1421673
      Object: This study aims to identify differentially expressed genes (DEGs) between high-risk and non-high-risk groups in neuroblastoma (NB), construct a prognostic model, and establish a risk score formula.Materials and methods: The NB dataset GSE49710 (n = 498) from the GEO database served as the training cohort to select DEGs between high-risk and non-high-risk NB groups. Cellular senescence-related genes were obtained from the Aging Atlas database. Intersection genes from both datasets were identified as key genes of cellular senescence-related genes (SRGs). A prognostic model was constructed using Univariate Cox regression analysis and the Lasso algorithm with SRGs. Validation was performed using the E-MTAB-8248 cohort (n = 223). The expression levels of AURKA and CENPA were evaluated via RT-qPCR in two clinical NB sample groups.
    Results: Eight SRGs were identified, and a prognostic model comprising five genes related to cellular senescence was constructed. AURKA and CENPA showed significant expression in clinical samples and were closely associated with cellular senescence.
    Conclusion: The prognostic model consisted with five cellular senescence related genes effectively predicts the prognosis of NB patients. AURKA and CENPA represent promising targets in NB for predicting cellular senescence, offering potential insights for NB therapy.
    Keywords:  DEGs; SRG; cellular senescence; neuroblastoma; prognostic model; risk stratification
    DOI:  https://doi.org/10.3389/fcell.2024.1421673