bioRxiv. 2024 Dec 17. pii: 2024.12.06.627294. [Epub ahead of print]
Circadian rhythms in mammals arise from the spatiotemporal synchronization of ∼20,000 neuronal clocks in the Suprachiasmatic Nucleus (SCN). While anatomical, molecular, and genetic approaches have revealed diverse cell types and signaling mechanisms, the network wiring that enables SCN cells to communicate and synchronize remains unclear. To overcome the challenges of revealing functional connectivity from fixed tissue, we developed MITE (Mutual Information & Transfer Entropy), an information theory approach that infers directed cell-cell connections with high fidelity. By analyzing 3447 hours of continuously recorded clock gene expression from 9011 cells in 17 mice, we found that the functional connectome of SCN was highly conserved bilaterally and across mice, sparse, and organized into a dorsomedial and a ventrolateral module. While most connections were local, we discovered long-range connections from ventral cells to cells in both the ventral and dorsal SCN. Based on their functional connectivity, SCN cells can be characterized as circadian signal generators, broadcasters, sinks, or bridges. For example, a subset of VIP neurons acts as hubs that generate circadian signals critical to synchronize daily rhythms across the SCN neural network. Simulations of the experimentally inferred SCN networks recapitulated the stereotypical dorsal-to-ventral wave of daily PER2 expression and ability to spontaneously synchronize, revealing that SCN emergent dynamics are sculpted by cell-cell connectivity. We conclude that MITE provides a powerful method to infer functional connectomes, and that the conserved architecture of cell-cell connections mediates circadian synchrony across space and time in the mammalian SCN.
Highlights: We developed MITE, an information theory method, to accurately infer directed functional connectivity among circadian cells.SCN cell types with conserved connectivity patterns spatially organize into two regions and function as generators, broadcasters, sinks, or bridges of circadian information.One-third of VIP neurons serve as hubs that drive circadian synchrony across the SCN.Key connectivity features mediate the generation and maintenance of intercellular synchrony and daily waves of clock gene expression across the SCN.