bims-crepig Biomed News
on Chromatin regulation and epigenetics in cell fate and cancer
Issue of 2021‒08‒15
38 papers selected by
Connor Rogerson
University of Cambridge, MRC Cancer Unit


  1. Res Comput Mol Biol. 2020 May;12074 136-151
      Chromatin is the tightly packaged structure of DNA and protein within the nucleus of a cell. The arrangement of different protein complexes along the DNA modulates and is modulated by gene expression. Measuring the binding locations and level of occupancy of different transcription factors (TFs) and nucleosomes is therefore crucial to understanding gene regulation. Antibody-based methods for assaying chromatin occupancy are capable of identifying the binding sites of specific DNA binding factors, but only one factor at a time. On the other hand, epigenomic accessibility data like ATAC-seq, DNase-seq, and MNase-seq provide insight into the chromatin landscape of all factors bound along the genome, but with minimal insight into the identities of those factors. Here, we present RoboCOP, a multivariate state space model that integrates chromatin information from epigenomic accessibility data with nucleotide sequence to compute genome-wide probabilistic scores of nucleosome and TF occupancy, for hundreds of different factors at once. RoboCOP can be applied to any epigenomic dataset that provides quantitative insight into chromatin accessibility in any organism, but here we apply it to MNase-seq data to elucidate the protein-binding landscape of nucleosomes and 150 TFs across the yeast genome. Using available protein-binding datasets from the literature, we show that our model more accurately predicts the binding of these factors genome-wide.
    Keywords:  Chromatin accessibility; Hidden Markov model; MNase-seq
    DOI:  https://doi.org/10.1007/978-3-030-45257-5_9
  2. Mol Cell. 2021 Aug 04. pii: S1097-2765(21)00593-1. [Epub ahead of print]
      The mechanistic understanding of nascent RNAs in transcriptional control remains limited. Here, by a high sensitivity method methylation-inscribed nascent transcripts sequencing (MINT-seq), we characterized the landscapes of N6-methyladenosine (m6A) on nascent RNAs. We uncover heavy but selective m6A deposition on nascent RNAs produced by transcription regulatory elements, including promoter upstream antisense RNAs and enhancer RNAs (eRNAs), which positively correlates with their length, inclusion of m6A motif, and RNA abundances. m6A-eRNAs mark highly active enhancers, where they recruit nuclear m6A reader YTHDC1 to phase separate into liquid-like condensates, in a manner dependent on its C terminus intrinsically disordered region and arginine residues. The m6A-eRNA/YTHDC1 condensate co-mixes with and facilitates the formation of BRD4 coactivator condensate. Consequently, YTHDC1 depletion diminished BRD4 condensate and its recruitment to enhancers, resulting in inhibited enhancer and gene activation. We propose that chemical modifications of eRNAs together with reader proteins play broad roles in enhancer activation and gene transcriptional control.
    Keywords:  BRD4; MINT-Seq; RNA m6A methylation; YTHDC1; enhancer RNAs; enhancers; epitranscriptome; nuclear condensate; phase separation; transcriptional activation
    DOI:  https://doi.org/10.1016/j.molcel.2021.07.024
  3. Mol Cell. 2021 Aug 02. pii: S1097-2765(21)00591-8. [Epub ahead of print]
      Transcription initiation by RNA polymerase II (RNA Pol II) requires preinitiation complex (PIC) assembly at gene promoters. In the dynamic nucleus, where thousands of promoters are broadly distributed in chromatin, it is unclear how multiple individual components converge on any target to establish the PIC. Here we use live-cell, single-molecule tracking in S. cerevisiae to visualize constrained exploration of the nucleoplasm by PIC components and Mediator's key role in guiding this process. On chromatin, TFIID/TATA-binding protein (TBP), Mediator, and RNA Pol II instruct assembly of a short-lived PIC, which occurs infrequently but efficiently within a few seconds on average. Moreover, PIC exclusion by nucleosome encroachment underscores regulated promoter accessibility by chromatin remodeling. Thus, coordinated nuclear exploration and recruitment to accessible targets underlies dynamic PIC establishment in yeast. Our study provides a global spatiotemporal model for transcription initiation in live cells.
    Keywords:  Mediator; Transcription initiation; live-cell imaging; single-molecule tracking; subdiffusion
    DOI:  https://doi.org/10.1016/j.molcel.2021.07.022
  4. Epigenetics. 2021 Aug 09. 1-22
      Disruption of histone acetylation-mediated gene control is a critical step in Alzheimer's Disease (AD), yet chromatin analysis of antagonistic histone acetyltransferases (HATs) and histone deacetylases (HDACs) causing these alterations remains uncharacterized. We report the first Tip60 HAT versus HDAC2 chromatin (ChIP-seq) and transcriptional (RNA-seq) profiling study in Drosophila melanogaster brains that model early human AD. We find Tip60 and HDAC2 predominantly recruited to identical neuronal genes. Moreover, AD brains exhibit robust genome-wide early alterations that include enhanced HDAC2 and reduced Tip60 binding and transcriptional dysregulation. Orthologous human genes to co-Tip60/HDAC2 D. melanogaster neural targets exhibit conserved disruption patterns in AD patient hippocampi. Notably, we discovered distinct transcription factor binding sites close or within Tip60/HDAC2 co-peaks in neuronal genes, implicating them in coenzyme recruitment. Increased Tip60 protects against transcriptional dysregulation and enhanced HDAC2 enrichment genome-wide. We advocate Tip60 HAT/HDAC2 mediated epigenetic neuronal gene disruption as a genome-wide initial causal event in AD.
    Keywords:  Alzheimer’s disease; Amyloid precursor protein; KAT5; histone acetylation; sequencing
    DOI:  https://doi.org/10.1080/15592294.2021.1959742
  5. Methods Mol Biol. 2021 ;2351 181-199
      Proximity ligation-assisted ChIP-Seq (PLAC-Seq), also known as HiChIP, is a method to detect and quantify chromatin contacts anchored at genomic regions bound by specific proteins or histone modifications. By combining in situ Hi-C and chromatin immunoprecipitation (ChIP) using antibodies against transcription factors (TFs) or histone marks of interest, the method achieves targeted interrogation of chromatin organization at a subset of genomic regions. PLAC-Seq is able to identify long-range chromatin interactions at kilobase-scale resolution with significantly reduced sequencing cost.
    Keywords:  3D genome; Chromatin immunoprecipitation; Hi-C; Long-range chromatin interaction; PLAC-Seq
    DOI:  https://doi.org/10.1007/978-1-0716-1597-3_10
  6. Mol Cell. 2021 Aug 03. pii: S1097-2765(21)00586-4. [Epub ahead of print]
      Epigenetic inheritance of heterochromatin requires DNA-sequence-independent propagation mechanisms, coupling to RNAi, or input from DNA sequence, but how DNA contributes to inheritance is not understood. Here, we identify a DNA element (termed "maintainer") that is sufficient for epigenetic inheritance of pre-existing histone H3 lysine 9 methylation (H3K9me) and heterochromatin in Schizosaccharomyces pombe but cannot establish de novo gene silencing in wild-type cells. This maintainer is a composite DNA element with binding sites for the Atf1/Pcr1 and Deb1 transcription factors and the origin recognition complex (ORC), located within a 130-bp region, and can be converted to a silencer in cells with lower rates of H3K9me turnover, suggesting that it participates in recruiting the H3K9 methyltransferase Clr4/Suv39h. These results suggest that, in the absence of RNAi, histone H3K9me is only heritable when it can collaborate with maintainer-associated DNA-binding proteins that help recruit the enzyme responsible for its epigenetic deposition.
    Keywords:  Atf1; Clr4; Deb1; H3K9me; ORC; Pcr1; Suv39h; epigenetic inheritance; heterochromatin; maintainer
    DOI:  https://doi.org/10.1016/j.molcel.2021.07.017
  7. Methods Mol Biol. 2021 ;2351 337-352
      DNA methylation is thought to regulate accessibility of chromatin and binding of regulatory elements; however, it is difficult to determine if chromatin accessibility or transcription factor (TF) binding overlap with methylated or unmethylated DNA if the assays are performed separately. In order to examine accessibility or TF binding simultaneously with methylation on the same DNA molecule, we developed EpiMethylTag which combines ATAC-Seq or ChIP-Seq (M-ATAC or M-ChIP) with bisulfite conversion. Our approach provides a fast, low-input, low sequencing depth method to determine whether DNAme and accessibility/TF binding are mutually exclusive or can coexist in certain locations.
    Keywords:  Bisulfite sequencing; Chromatin accessibility; Chromatin immunoprecipitation; CpG methylation; Tagmentation
    DOI:  https://doi.org/10.1007/978-1-0716-1597-3_19
  8. Mol Cell. 2021 Aug 05. pii: S1097-2765(21)00579-7. [Epub ahead of print]
      The histone chaperone FACT occupies transcribed regions where it plays prominent roles in maintaining chromatin integrity and preserving epigenetic information. How it is targeted to transcribed regions, however, remains unclear. Proposed models include docking on the RNA polymerase II (RNAPII) C-terminal domain (CTD), recruitment by elongation factors, recognition of modified histone tails, and binding partially disassembled nucleosomes. Here, we systematically test these and other scenarios in Saccharomyces cerevisiae and find that FACT binds transcribed chromatin, not RNAPII. Through a combination of high-resolution genome-wide mapping, single-molecule tracking, and mathematical modeling, we propose that FACT recognizes the +1 nucleosome, as it is partially unwrapped by the engaging RNAPII, and spreads to downstream nucleosomes aided by the chromatin remodeler Chd1. Our work clarifies how FACT interacts with genes, suggests a processive mechanism for FACT function, and provides a framework to further dissect the molecular mechanisms of transcription-coupled histone chaperoning.
    Keywords:  Chd1; FACT; Pob3; RNA polymerase II; Spt16; chromatin remodeling; histone chaperone; mathematical modeling; nucleosome unwrapping; single-molecule tracking
    DOI:  https://doi.org/10.1016/j.molcel.2021.07.010
  9. NPJ Genom Med. 2021 Aug 11. 6(1): 65
      Trimethylation of histone H3 lysine 27 trimethylation (H3K27me3) may be recruited by repressive Polycomb complexes to mediate gene silencing, which is critical for maintaining embryonic stem cell pluripotency and differentiation. However, the roles of aberrant H3K27me3 patterns in tumorigenesis are not fully understood. Here, we discovered that grand silencer domains (breadth > 50 kb) for H3K27me3 were significantly associated with epithelial cell differentiation and exhibited high gene essentiality and conservation in human esophageal epithelial cells. These grand H3K27me3 domains exhibited high modification signals involved in gene silencing, and preferentially occupied the entirety of topologically associating domains and interact with each other. We found that widespread loss of the grand H3K27me3 domains in of esophageal squamous cell carcinomas (ESCCs) were enriched in genes involved in epithelium and endothelium differentiation, which were significantly associated with overexpression with increase of active modifications of H3K4me3, H3K4me1, and H3K27ac marks, as well as DNA hypermethylation in the gene bodies. A total of 208 activated genes with loss of grand H3K27me3 domains in ESCC were identified, where the higher expression and mutation of T-box transcription factor 20 (TBX20) were associated with worse patients' outcomes. Our results showed that knockdown of TBX20 may have led to a striking defect in esophageal cancer cell growth and carcinogenesis-related pathway, including cell cycle and homologous recombination. Together, our results reveal that loss of grand H3K27me3 domains represent a catalog of remarkable activating regulators involved in carcinogenesis.
    DOI:  https://doi.org/10.1038/s41525-021-00232-6
  10. PLoS Genet. 2021 Aug;17(8): e1009689
      Elucidating the transcriptional regulatory networks that underlie growth and development requires robust ways to define the complete set of transcription factor (TF) binding sites. Although TF-binding sites are known to be generally located within accessible chromatin regions (ACRs), pinpointing these DNA regulatory elements globally remains challenging. Current approaches primarily identify binding sites for a single TF (e.g. ChIP-seq), or globally detect ACRs but lack the resolution to consistently define TF-binding sites (e.g. DNAse-seq, ATAC-seq). To address this challenge, we developed MNase-defined cistrome-Occupancy Analysis (MOA-seq), a high-resolution (< 30 bp), high-throughput, and genome-wide strategy to globally identify putative TF-binding sites within ACRs. We used MOA-seq on developing maize ears as a proof of concept, able to define a cistrome of 145,000 MOA footprints (MFs). While a substantial majority (76%) of the known ATAC-seq ACRs intersected with the MFs, only a minority of MFs overlapped with the ATAC peaks, indicating that the majority of MFs were novel and not detected by ATAC-seq. MFs were associated with promoters and significantly enriched for TF-binding and long-range chromatin interaction sites, including for the well-characterized FASCIATED EAR4, KNOTTED1, and TEOSINTE BRANCHED1. Importantly, the MOA-seq strategy improved the spatial resolution of TF-binding prediction and allowed us to identify 215 motif families collectively distributed over more than 100,000 non-overlapping, putatively-occupied binding sites across the genome. Our study presents a simple, efficient, and high-resolution approach to identify putative TF footprints and binding motifs genome-wide, to ultimately define a native cistrome atlas.
    DOI:  https://doi.org/10.1371/journal.pgen.1009689
  11. Mol Cell. 2021 Aug 06. pii: S1097-2765(21)00594-3. [Epub ahead of print]
      RNA polymerase II (RNA Pol II) transcription reconstituted from purified factors suggests pre-initiation complexes (PICs) can assemble by sequential incorporation of factors at the TATA box. However, these basal transcription reactions are generally independent of activators and co-activators. To study PIC assembly under more realistic conditions, we used single-molecule microscopy to visualize factor dynamics during activator-dependent reactions in nuclear extracts. Surprisingly, RNA Pol II, TFIIF, and TFIIE can pre-assemble on enhancer-bound activators before loading into PICs, and multiple RNA Pol II complexes can bind simultaneously to create a localized cluster. Unlike TFIIF and TFIIE, TFIIH binding is singular and dependent on the basal promoter. Activator-tethered factors exhibit dwell times on the order of seconds. In contrast, PICs can persist on the order of minutes in the absence of nucleotide triphosphates, although TFIIE remains unexpectedly dynamic even after TFIIH incorporation. Our kinetic measurements lead to a new branched model for activator-dependent PIC assembly.
    Keywords:  RNA polymerase II; TFIIE; TFIIF; TFIIH; Upstream Activating Sequence; enhancers; transcription activation; transcription initiation
    DOI:  https://doi.org/10.1016/j.molcel.2021.07.025
  12. iScience. 2021 Aug 20. 24(8): 102867
      Recent characterizations of pioneer transcription factors provide insights into their structures and patterns of chromatin recognition associated with their roles in cell fate commitment and transformation. Intersecting with these basic science concepts, identification of pioneer factors (PFs) fused together as driver translocations in childhood cancers raises questions of whether these fusions retain the fundamental ability to invade repressed chromatin, consistent with their monomeric PF constituents. This study defines the cellular and chromatin localization of PAX3-FOXO1, an oncogenic driver of childhood rhabdomyosarcoma (RMS), derived from a fusion of PFs. To quantitatively define its chromatin-targeting functions and capacity to drive epigenetic reprogramming, we developed a ChIP-seq workflow with per-cell normalization (pc-ChIP-seq). Our quantitative localization studies address structural variation in RMS genomes and reveal insights into inactive chromatin localization of PAX3-FOXO1. Taken together, our studies are consistent with pioneer function for a driver oncoprotein in RMS, with repressed chromatin binding and nucleosome-motif targeting.
    Keywords:  Molecular Genetics; Systems biology; Transcriptomics
    DOI:  https://doi.org/10.1016/j.isci.2021.102867
  13. Nat Commun. 2021 08 11. 12(1): 4859
      Stem and progenitor cells undergo a global elevation of nascent transcription, or hypertranscription, during key developmental transitions involving rapid cell proliferation. The chromatin remodeler Chd1 mediates hypertranscription in pluripotent cells but its mechanism of action remains poorly understood. Here we report a novel role for Chd1 in protecting genome integrity at promoter regions by preventing DNA double-stranded break (DSB) accumulation in ES cells. Chd1 interacts with several DNA repair factors including Atm, Parp1, Kap1 and Topoisomerase 2β and its absence leads to an accumulation of DSBs at Chd1-bound Pol II-transcribed genes and rDNA. Genes prone to DNA breaks in Chd1 KO ES cells are longer genes with GC-rich promoters, a more labile nucleosomal structure and roles in chromatin regulation, transcription and signaling. These results reveal a vulnerability of hypertranscribing stem cells to accumulation of endogenous DNA breaks, with important implications for developmental and cancer biology.
    DOI:  https://doi.org/10.1038/s41467-021-25088-3
  14. Nucleic Acids Res. 2021 Aug 09. pii: gkab679. [Epub ahead of print]
      To reconstruct systematically hyperactive transcription factor (TF)-dependent transcription networks in squamous cell carcinomas (SCCs), a computational method (ELMER) was applied to 1293 pan-SCC patient samples, and 44 hyperactive SCC TFs were identified. As a top candidate, DLX5 exhibits a notable bifurcate re-configuration of its bivalent promoter in cancer. Specifically, DLX5 maintains a bivalent state in normal tissues; its promoter is hypermethylation, leading to DLX5 transcriptional silencing in esophageal adenocarcinoma (EAC). In stark contrast, DLX5 promoter gains active histone marks and becomes transcriptionally activated in ESCC, which is directly mediated by SOX2. Functionally, silencing of DLX5 substantially inhibits SCC viability both in vitro and in vivo. Mechanistically, DLX5 cooperates with TP63 in regulating ∼2000 enhancers and promoters, which converge on activating cancer-promoting pathways. Together, our data establish a novel and strong SCC-promoting factor and elucidate a new epigenomic mechanism - bifurcate chromatin re-configuration - during cancer development.
    DOI:  https://doi.org/10.1093/nar/gkab679
  15. Methods Mol Biol. 2021 ;2351 41-65
      Enhancers are transcribed by RNA polymerase II (Pol II). In order to study the regulation of enhancer transcription and its function in target gene control, methods are required that track genome transcription with high precision in vivo. Here, we provide step-by-step guidance for performing native elongating transcript sequencing (NET-Seq) in mammalian cells. NET-Seq allows quantitative measurements of transcription genome-wide, including enhancer transcription, with single-nucleotide and DNA strand resolution. The approach consists of capturing and efficiently converting the 3'-ends of the nascent RNA into a sequencing library followed by next-generation sequencing and computational data analysis. The protocol includes quality control measurements to monitor the success of the main steps. Following this protocol, a NET-Seq library is obtained within 5 days.
    Keywords:  Enhancer; Genome-wide; Library preparation; NET-Seq; Nascent RNA; Next-generation sequencing; RNA polymerase II; Transcription; eRNA
    DOI:  https://doi.org/10.1007/978-1-0716-1597-3_3
  16. Nucleic Acids Res. 2021 Aug 11. pii: gkab676. [Epub ahead of print]
      The accumulation of large epigenomics data consortiums provides us with the opportunity to extrapolate existing knowledge to new cell types and conditions. We propose Epitome, a deep neural network that learns similarities of chromatin accessibility between well characterized reference cell types and a query cellular context, and copies over signal of transcription factor binding and modification of histones from reference cell types when chromatin profiles are similar to the query. Epitome achieves state-of-the-art accuracy when predicting transcription factor binding sites on novel cellular contexts and can further improve predictions as more epigenetic signals are collected from both reference cell types and the query cellular context of interest.
    DOI:  https://doi.org/10.1093/nar/gkab676
  17. Elife. 2021 Aug 11. pii: e65654. [Epub ahead of print]10
      Fluctuation ('noise') in gene expression is critical for mammalian cellular processes. Numerous mechanisms contribute to its origins, yet the mechanisms behind large fluctuations that are induced by single transcriptional activators remain elusive. Here, we probed putative mechanisms by studying the dynamic regulation of transcriptional activator binding, histone regulator inhibitors, chromatin accessibility, and levels of mRNAs and proteins in single cells. Using a light-induced expression system, we showed that the transcriptional activator could form an interplay with dual functional co-activator/histone acetyltransferases CBP/p300. This interplay resulted in substantial heterogeneity in H3K27ac, chromatin accessibility, and transcription. Simultaneous attenuation of CBP/p300 and HDAC4/5 reduced heterogeneity in the expression of endogenous genes, suggesting that this mechanism is universal. We further found that the noise was reduced by pulse-wide modulation of transcriptional activator binding possibly as a result of alternating the epigenetic states. Our findings suggest a mechanism for the modulation of noise in synthetic and endogenous gene expression systems.
    Keywords:  chromosomes; computational biology; epigenetic bistability; gene expression; gene expression noise; histone modification; human; mouse; oscillation; synthetic circuit; systems biology; transcriptional activator
    DOI:  https://doi.org/10.7554/eLife.65654
  18. Oncogene. 2021 Aug 09.
      The activity of Rho family GTPase protein, RAC1, which plays important normal physiological functions, is dysregulated in multiple cancers. RAC1 is expressed in both estrogen receptor alpha (ER)-positive and ER-negative breast cancer (BC) cells. However, ER-positive BC is more sensitive to RAC1 inhibition. We have determined that reducing RAC1 activity, using siRNA or EHT 1864 (a small molecule Rac inhibitor), leads to rapid ER protein degradation. RAC1 interacts with ER within the ER complex and RAC1 localizes to chromatin binding sites for ER upon estrogen treatment. RAC1 activity is important for RNA Pol II function at both promoters and enhancers of ER target genes and ER-regulated gene transcription is blocked by EHT 1864, in a dose-dependent manner. Having identified that RAC1 is an essential ER cofactor for ER protein stability and ER transcriptional activity, we report that RAC1 inhibition could be an effective therapeutic approach for ER-positive BC.
    DOI:  https://doi.org/10.1038/s41388-021-01985-1
  19. Nucleic Acids Res. 2021 Aug 07. pii: gkab670. [Epub ahead of print]
      Histone recognition constitutes a key epigenetic mechanism in gene regulation and cell fate decision. PHF14 is a conserved multi-PHD finger protein that has been implicated in organ development, tissue homeostasis, and tumorigenesis. Here we show that PHF14 reads unmodified histone H3(1-34) through an integrated PHD1-ZnK-PHD2 cassette (PHF14PZP). Our binding, structural and HDX-MS analyses revealed a feature of bipartite recognition, in which PHF14PZP utilizes two distinct surfaces for concurrent yet separable engagement of segments H3-Nter (e.g. 1-15) and H3-middle (e.g. 14-34) of H3(1-34). Structural studies revealed a novel histone H3 binding mode by PHD1 of PHF14PZP, in which a PHF14-unique insertion loop but not the core β-strands of a PHD finger dominates H3K4 readout. Binding studies showed that H3-PHF14PZP engagement is sensitive to modifications occurring to H3 R2, T3, K4, R8 and K23 but not K9 and K27, suggesting multiple layers of modification switch. Collectively, our work calls attention to PHF14 as a 'ground' state (unmodified) H3(1-34) reader that can be negatively regulated by active marks, thus providing molecular insights into a repressive function of PHF14 and its derepression.
    DOI:  https://doi.org/10.1093/nar/gkab670
  20. Cell. 2021 Aug 07. pii: S0092-8674(21)00876-X. [Epub ahead of print]
      Animal bodies are composed of cell types with unique expression programs that implement their distinct locations, shapes, structures, and functions. Based on these properties, cell types assemble into specific tissues and organs. To systematically explore the link between cell-type-specific gene expression and morphology, we registered an expression atlas to a whole-body electron microscopy volume of the nereid Platynereis dumerilii. Automated segmentation of cells and nuclei identifies major cell classes and establishes a link between gene activation, chromatin topography, and nuclear size. Clustering of segmented cells according to gene expression reveals spatially coherent tissues. In the brain, genetically defined groups of neurons match ganglionic nuclei with coherent projections. Besides interneurons, we uncover sensory-neurosecretory cells in the nereid mushroom bodies, which thus qualify as sensory organs. They furthermore resemble the vertebrate telencephalon by molecular anatomy. We provide an integrated browser as a Fiji plugin for remote exploration of all available multimodal datasets.
    Keywords:  Platynereis dumerilii; automatic segmentation; cell types; gene expression atlas; image registration; machine learning; multimodal data integration; mushroom bodies; telencephalon; volume electron microscopy
    DOI:  https://doi.org/10.1016/j.cell.2021.07.017
  21. PLoS Genet. 2021 Aug 10. 17(8): e1009737
      Ultradian glucocorticoid rhythms are highly conserved across mammalian species, however, their functional significance is not yet fully understood. Here we demonstrate that pulsatile corticosterone replacement in adrenalectomised rats induces a dynamic pattern of glucocorticoid receptor (GR) binding at ~3,000 genomic sites in liver at the pulse peak, subsequently not found during the pulse nadir. In contrast, constant corticosterone replacement induced prolonged binding at the majority of these sites. Additionally, each pattern further induced markedly different transcriptional responses. During pulsatile treatment, intragenic occupancy by active RNA polymerase II exhibited pulsatile dynamics with transient changes in enrichment, either decreased or increased depending on the gene, which mostly returned to baseline during the inter-pulse interval. In contrast, constant corticosterone exposure induced prolonged effects on RNA polymerase II occupancy at the majority of gene targets, thus acting as a sustained regulatory signal for both transactivation and repression of glucocorticoid target genes. The nett effect of these differences were consequently seen in the liver transcriptome as RNA-seq analysis indicated that despite the same overall amount of corticosterone infused, twice the number of transcripts were regulated by constant corticosterone infusion, when compared to pulsatile. Target genes that were found to be differentially regulated in a pattern-dependent manner were enriched in functional pathways including carbohydrate, cholesterol, glucose and fat metabolism as well as inflammation, suggesting a functional role for dysregulated glucocorticoid rhythms in the development of metabolic dysfunction.
    DOI:  https://doi.org/10.1371/journal.pgen.1009737
  22. Proc Natl Acad Sci U S A. 2021 Aug 17. pii: e2107558118. [Epub ahead of print]118(33):
      As phosphorus is one of the most limiting nutrients in many natural and agricultural ecosystems, plants have evolved strategies that cope with its scarcity. Genetic approaches have facilitated the identification of several molecular elements that regulate the phosphate (Pi) starvation response (PSR) of plants, including the master regulator of the transcriptional response to phosphate starvation PHOSPHATE STARVATION RESPONSE1 (PHR1). However, the chromatin modifications underlying the plant transcriptional response to phosphate scarcity remain largely unknown. Here, we present a detailed analysis of changes in chromatin accessibility during phosphate starvation in Arabidopsis thaliana root cells. Root cells undergo a genome-wide remodeling of chromatin accessibility in response to Pi starvation that is often associated with changes in the transcription of neighboring genes. Analysis of chromatin accessibility in the phr1 phl2 double mutant revealed that the transcription factors PHR1 and PHL2 play a key role in remodeling chromatin accessibility in response to Pi limitation. We also discovered that PHR1 and PHL2 play an important role in determining chromatin accessibility and the associated transcription of many genes under optimal Pi conditions, including genes involved in the PSR. We propose that a set of transcription factors directly activated by PHR1 in Pi-starved root cells trigger a second wave of epigenetic changes required for the transcriptional activation of the complete set of low-Pi-responsive genes.
    Keywords:  chromatin; chromatin accessibility; epigenetics; phosphate starvation
    DOI:  https://doi.org/10.1073/pnas.2107558118
  23. Genome Biol. 2021 Aug 10. 22(1): 221
      Single-cell RNA-seq (scRNA-seq) profiles gene expression with high resolution. Here, we develop a stepwise computational method-called SCAPTURE to identify, evaluate, and quantify cleavage and polyadenylation sites (PASs) from 3' tag-based scRNA-seq. SCAPTURE detects PASs de novo in single cells with high sensitivity and accuracy, enabling detection of previously unannotated PASs. Quantified alternative PAS transcripts refine cell identity analysis beyond gene expression, enriching information extracted from scRNA-seq data. Using SCAPTURE, we show changes of PAS usage in PBMCs from infected versus healthy individuals at single-cell resolution.
    Keywords:  APA; Deep learning; PAS; Peak calling; Transcript quantification; scRNA-seq
    DOI:  https://doi.org/10.1186/s13059-021-02437-5
  24. Cell Rep. 2021 Aug 10. pii: S2211-1247(21)00955-4. [Epub ahead of print]36(6): 109524
      The immune system of skin develops in stages in mice. However, the developmental dynamics of immune cells in human skin remains elusive. Here, we perform transcriptome profiling of CD45+ hematopoietic cells in human fetal skin at an estimated gestational age of 10-17 weeks by single-cell RNA sequencing. A total of 13 immune cell types are identified. Skin macrophages show dynamic heterogeneity over the course of skin development. A major shift in lymphoid cell developmental states occurs from the first to the second trimester that implies an in situ differentiation process. Gene expression analysis reveals a typical developmental program in immune cells in accordance with their functional maturation, possibly involving metabolic reprogramming. Finally, we identify transcription factors (TFs) that potentially regulate cellular transitions by comparing TFs and TF target gene networks. These findings provide detailed insight into how the immune system of the human skin is established during development.
    Keywords:  developmental dynamics; human fetal skin; immune cells; innate lymphoid cells; macrohages; metabolic reprogramming; single-cell RNA sequencing
    DOI:  https://doi.org/10.1016/j.celrep.2021.109524
  25. Nat Commun. 2021 08 11. 12(1): 4856
      Totipotent cells have the ability to generate embryonic and extra-embryonic tissues. Interestingly, a rare population of cells with totipotent-like potential, known as 2 cell (2C)-like cells, has been identified within ESC cultures. They arise from ESC and display similar features to those found in the 2C embryo. However, the molecular determinants of 2C-like conversion have not been completely elucidated. Here, we show that the CCCTC-binding factor (CTCF) is a barrier for 2C-like reprogramming. Indeed, forced conversion to a 2C-like state by the transcription factor DUX is associated with DNA damage at a subset of CTCF binding sites. Depletion of CTCF in ESC efficiently promotes spontaneous and asynchronous conversion to a 2C-like state and is reversible upon restoration of CTCF levels. This phenotypic reprogramming is specific to pluripotent cells as neural progenitor cells do not show 2C-like conversion upon CTCF-depletion. Furthermore, we show that transcriptional activation of the ZSCAN4 cluster is necessary for successful 2C-like reprogramming. In summary, we reveal an unexpected relationship between CTCF and 2C-like reprogramming.
    DOI:  https://doi.org/10.1038/s41467-021-25072-x
  26. Nat Commun. 2021 08 11. 12(1): 4853
      SMAD4 is mutated in human lung cancer, but the underlying mechanism by which Smad4 loss-of-function (LOF) accelerates lung cancer metastasis is yet to be elucidated. Here, we generate a highly aggressive lung cancer mouse model bearing conditional KrasG12D, p53fl/fl LOF and Smad4fl/fl LOF mutations (SPK), showing a much higher incidence of tumor metastases than the KrasG12D, p53fl/fl (PK) mice. Molecularly, PAK3 is identified as a downstream effector of Smad4, mediating metastatic signal transduction via the PAK3-JNK-Jun pathway. Upregulation of PAK3 by Smad4 LOF in SPK mice is achieved by attenuating Smad4-dependent transcription of miR-495 and miR-543. These microRNAs (miRNAs) directly bind to the PAK3 3'UTR for blockade of PAK3 production, ultimately regulating lung cancer metastasis. An inverse correlation between Smad4 and PAK3 pathway components is observed in human lung cancer. Our study highlights the Smad4-PAK3 regulation as a point of potential therapy in metastatic lung cancer.
    DOI:  https://doi.org/10.1038/s41467-021-24898-9
  27. Int J Clin Exp Pathol. 2021 ;14(7): 795-810
      The transcription factor ETS variant 1 (ETV1) is capable of promoting prostate tumorigenesis. We demonstrate that ETV1 can be posttranslationally modified by covalent attachment of small ubiquitin-like modifier 1 (SUMO1) onto four different lysine residues. In human embryonic kidney 293T cells, mutation of these sumoylation sites stimulated the transactivation potential of ETV1 at the matrix metalloproteinase 1 (MMP1), but not Yes-associated protein 1 gene promoter, while ETV1 protein stability and intracellular localization remained unchanged. In stark contrast, sumoylation-deficient ETV1 was repressed in its ability to stimulate the MMP1 promoter and to cooperate with a histone demethylase, JmjC domain-containing 2A (JMJD2A), in LNCaP prostate cancer cells. Mutation of sumoylation sites enhanced the ability of ETV1 to interact with the histone deacetylase (HDAC) 1, but had basically no impact on complex formation with HDAC3 or JMJD2A. Further, compared to non-sumoylated ETV1, its sumoylated forms were less able to bind to the transcription factor, SMAD family member 4. Lastly, in contrast to wild-type ETV1, sumoylation-deficient ETV1 repressed LNCaP cell growth. Altogether, these data suggest that sumoylation modulates ETV1 function in a cell type-specific manner, possibly by altering the spectrum of transcriptional cofactors being recruited. Notably, SUMO pathway components SUMO1, ubiquitin-like modifier activating enzyme 2 and ubiquitin conjugating enzyme 9 were upregulated in prostate tumors, implying that enhanced sumoylation indeed promotes ETV1's oncogenic activity during prostate cancer formation.
    Keywords:  ETV1; SUMO; posttranslational modification; prostate cancer; transcription
  28. Mol Oncol. 2021 Aug 13.
      The hypoxia-inducible factor HIF-1 is essential for oxygen homeostasis. Despite its well-understood oxygen-dependent expression, regulation of its transcriptional activity remains unclear. We show that phosphorylation by ERK1/2, in addition to promoting HIF-1α nuclear accumulation, also enhances its interaction with chromatin and stimulates direct binding to nucleophosmin (NPM1), a histone chaperone and chromatin remodeler. NPM1 is required for phosphorylation-dependent recruitment of HIF-1 to hypoxia-response elements (HREs), its interaction with acetylated histones and high expression of HIF-1 target genes under hypoxia. Transcriptome analysis revealed a significant number of hypoxia-related genes commonly regulated by NPM1 and HIF-1. These NPM1/HIF-1α co-upregulated genes are enriched in three different cancer types and their expression correlates with hypoxic tumor status and worse patient prognosis. In concert, silencing of NPM1 expression or disruption of its association with HIF-1α inhibits metabolic adaptation of cancer cells and triggers apoptotic death upon hypoxia. We suggest that ERK-mediated phosphorylation of HIF-1α regulates its physical interaction with NPM1, which is essential for productive association of HIF-1 with hypoxia target genes and their optimal transcriptional activation, required for survival under low oxygen or tumor growth.
    Keywords:  Cancer; HIF; Hypoxia; NPM1; Nucleophosmin
    DOI:  https://doi.org/10.1002/1878-0261.13080
  29. Cancer Res. 2021 Aug 12. pii: canres.0567.2021. [Epub ahead of print]
      Ferroptosis is a lipid peroxidation-dependent cell death caused by metabolic dysfunction. Ferroptosis-associated enzymes are promising therapeutic targets for cancer treatment. However, such therapeutic strategies show limited efficacy due to drug resistance and other largely unknown underlying mechanisms. Here we report that cystine transporter SLC7A11 is upregulated in lung cancer stem-like cells (CSLC) and can be activated by stem cell transcriptional factor SOX2. Mutation of SOX2 binding site in SLC7A11 promoter reduced SLC7A11 expression and increased sensitivity to ferroptosis in cancer cells. Oxidation at Cys265 of SOX2 inhibited its activity and decreased the self-renewal capacity of CSLCs. Moreover, tumors with high SOX2 expression were more resistant to ferroptosis, and SLC7A11 expression was positively correlated with SOX2 in both mouse and human lung cancer tissue. Together, our study provides a mechanism by which cancer cells evade ferroptosis and suggests that oxidation of SOX2 can be a potential therapeutic target for cancer treatment.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-0567
  30. Nature. 2021 Aug 11.
      Non-genetic mechanisms have recently emerged as important drivers of cancer therapy failure1, where some cancer cells can enter a reversible drug-tolerant persister state in response to treatment2. Although most cancer persisters remain arrested in the presence of the drug, a rare subset can re-enter the cell cycle under constitutive drug treatment. Little is known about the non-genetic mechanisms that enable cancer persisters to maintain proliferative capacity in the presence of drugs. To study this rare, transiently resistant, proliferative persister population, we developed Watermelon, a high-complexity expressed barcode lentiviral library for simultaneous tracing of each cell's clonal origin and proliferative and transcriptional states. Here we show that cycling and non-cycling persisters arise from different cell lineages with distinct transcriptional and metabolic programs. Upregulation of antioxidant gene programs and a metabolic shift to fatty acid oxidation are associated with persister proliferative capacity across multiple cancer types. Impeding oxidative stress or metabolic reprogramming alters the fraction of cycling persisters. In human tumours, programs associated with cycling persisters are induced in minimal residual disease in response to multiple targeted therapies. The Watermelon system enabled the identification of rare persister lineages that are preferentially poised to proliferate under drug pressure, thus exposing new vulnerabilities that can be targeted to delay or even prevent disease recurrence.
    DOI:  https://doi.org/10.1038/s41586-021-03796-6
  31. EMBO Rep. 2021 Aug 09. e52023
      Histone lysine crotonylation (Kcr), an evolutionarily conserved and widespread non-acetyl short-chain lysine acylation, plays important roles in transcriptional regulation and disease processes. However, the genome-wide distribution, dynamic changes, and associations with gene expression of histone Kcr during developmental processes are largely unknown. In this study, we find that histone Kcr is mainly located in active promoter regions, acts as an epigenetic hallmark of highly expressed genes, and regulates genes participating in metabolism and proliferation. Moreover, elevated histone Kcr activates bivalent promoters to stimulate gene expression in neural stem/progenitor cells (NSPCs) by increasing chromatin openness and recruitment of RNA polymerase II (RNAP2). Functionally, these activated genes contribute to transcriptome remodeling and promote neuronal differentiation. Overall, histone Kcr marks active promoters with high gene expression and modifies the local chromatin environment to allow gene activation.
    Keywords:  bivalent promoters; cell fate; gene expression; histone lysine crotonylation
    DOI:  https://doi.org/10.15252/embr.202052023
  32. New Phytol. 2021 Aug 10.
      Wounding triggers de novo organogenesis, vascular reconnection and defense response but how wound stress evoke such a diverse array of physiological responses remains unknown. We previously identified AP2/ERF transcription factors, WOUND INDUCED DEDIFFERENTIATION1 (WIND1) and its homologs, WIND2, WIND3 and WIND4, as key regulators of wound-induced cellular reprogramming in Arabidopsis. To understand how WIND transcription factors promote downstream events, we performed time-course transcriptome analyses after WIND1 induction. We observed a significant overlap between WIND1-induced genes and genes implicated in cellular reprogramming, vascular formation and pathogen response. We demonstrated that WIND transcription factors induce several reprogramming genes to promote callus formation at wound sites. We, in addition, showed that WIND transcription factors promote tracheary element formation, vascular reconnection and resistance to Pseudomonas syringae pv. tomato DC3000. These results indicate that WIND transcription factors function as key regulators of wound-induced responses by promoting dynamic transcriptional alterations. This study provides deeper mechanistic insights into how plants control multiple physiological responses after wounding.
    Keywords:  AP2; ERF transcription factor; pathogen resistance; regeneration; wound response; xylem formation
    DOI:  https://doi.org/10.1111/nph.17594
  33. Oncotarget. 2021 Aug 03. 12(16): 1566-1579
      Leiomyosarcomas (LMS) are diverse, rare, and aggressive mesenchymal soft tissue sarcomas. Epigenetic alterations influence multiple aspects of cancer, however epigenetic profiling of LMS has been limited. The goal of this study was to delineate the molecular landscape of LMS for subtype-specific differences (uterine LMS (ULMS) vs soft tissue LMS (STLMS)) based on integrated analysis of DNA methylation and gene expression to identify potential targets for therapeutic intervention and diagnosis. We identified differentially methylated and differentially expressed genes associated with ULMS and STLMS using DNA methylation and RNA-seq data from primary tumors. Two main clusters were identified through unsupervised hierarchical clustering: ULMS-enriched cluster and STLMS-enriched cluster. The integrated analysis demonstrated 34 genes associated with hypermethylation of the promoter CpG islands and downregulation of gene expression in ULMS or STLMS. In summary, these results indicate that differential DNA methylation and gene expression patterns are associated with ULMS and STLMS. Further studies are needed to delineate the contribution of epigenetic regulation to LMS subtype-specific gene expression and determine the roles of the differentially methylated and differentially expressed genes as potential therapeutic targets or biomarkers.
    Keywords:  DNA methylation; epigenetics; gene expression; leiomyosarcoma; uterine leiomyosarcoma
    DOI:  https://doi.org/10.18632/oncotarget.28032
  34. Nat Commun. 2021 Aug 13. 12(1): 4919
      BRCA1 or BRCA2 germline mutations predispose to breast, ovarian and other cancers. High-throughput sequencing of tumour genomes revealed that oncogene amplification and BRCA1/2 mutations are mutually exclusive in cancer, however the molecular mechanism underlying this incompatibility remains unknown. Here, we report that activation of β-catenin, an oncogene of the WNT signalling pathway, inhibits proliferation of BRCA1/2-deficient cells. RNA-seq analyses revealed β-catenin-induced discrete transcriptome alterations in BRCA2-deficient cells, including suppression of CDKN1A gene encoding the CDK inhibitor p21. This accelerates G1/S transition, triggering illegitimate origin firing and DNA damage. In addition, β-catenin activation accelerates replication fork progression in BRCA2-deficient cells, which is critically dependent on p21 downregulation. Importantly, we find that upregulated p21 expression is essential for the survival of BRCA2-deficient cells and tumours. Thus, our work demonstrates that β-catenin toxicity in cancer cells with compromised BRCA1/2 function is driven by transcriptional alterations that cause aberrant replication and inflict DNA damage.
    DOI:  https://doi.org/10.1038/s41467-021-25215-0
  35. Nucleic Acids Res. 2021 Aug 13. pii: gkab691. [Epub ahead of print]
      Activator proteins 1 (AP-1) comprise one of the largest families of eukaryotic basic leucine zipper transcription factors. Despite advances in the characterization of AP-1 DNA-binding sites, our ability to predict new binding sites and explain how the proteins achieve different gene expression levels remains limited. Here we address the role of sequence-specific DNA flexibility for stability and specific binding of AP-1 factors, using microsecond-long molecular dynamics simulations. As a model system, we employ yeast AP-1 factor Yap1 binding to three different response elements from two genetic environments. Our data show that Yap1 actively exploits the sequence-specific flexibility of DNA within the response element to form stable protein-DNA complexes. The stability also depends on the four to six flanking nucleotides, adjacent to the response elements. The flanking sequences modulate the conformational adaptability of the response element, making it more shape-efficient to form specific contacts with the protein. Bioinformatics analysis of differential expression of the studied genes supports our conclusions: the stability of Yap1-DNA complexes, modulated by the flanking environment, influences the gene expression levels. Our results provide new insights into mechanisms of protein-DNA recognition and the biological regulation of gene expression levels in eukaryotes.
    DOI:  https://doi.org/10.1093/nar/gkab691
  36. PLoS Comput Biol. 2021 Aug 12. 17(8): e1009256
      Metazoan core promoters, which direct the initiation of transcription by RNA polymerase II (Pol II), may contain short sequence motifs termed core promoter elements/motifs (e.g. the TATA box, initiator (Inr) and downstream core promoter element (DPE)), which recruit Pol II via the general transcription machinery. The DPE was discovered and extensively characterized in Drosophila, where it is strictly dependent on both the presence of an Inr and the precise spacing from it. Since the Drosophila DPE is recognized by the human transcription machinery, it is most likely that some human promoters contain a downstream element that is similar, though not necessarily identical, to the Drosophila DPE. However, only a couple of human promoters were shown to contain a functional DPE, and attempts to computationally detect human DPE-containing promoters have mostly been unsuccessful. Using a newly-designed motif discovery strategy based on Expectation-Maximization probabilistic partitioning algorithms, we discovered preferred downstream positions (PDP) in human promoters that resemble the Drosophila DPE. Available chromatin accessibility footprints revealed that Drosophila and human Inr+DPE promoter classes are not only highly structured, but also similar to each other, particularly in the proximal downstream region. Clustering of the corresponding sequence motifs using a neighbor-joining algorithm strongly suggests that canonical Inr+DPE promoters could be common to metazoan species. Using reporter assays we demonstrate the contribution of the identified downstream positions to the function of multiple human promoters. Furthermore, we show that alteration of the spacing between the Inr and PDP by two nucleotides results in reduced promoter activity, suggesting a spacing dependency of the newly discovered human PDP on the Inr. Taken together, our strategy identified novel functional downstream positions within human core promoters, supporting the existence of DPE-like motifs in human promoters.
    DOI:  https://doi.org/10.1371/journal.pcbi.1009256
  37. Exp Mol Med. 2021 Aug 12.
      Compelling evidence has indicated the vital role of lysine-specific demethylase 4 A (KDM4A), hypoxia-inducible factor-1α (HIF1α) and the mechanistic target of rapamycin (mTOR) signaling pathway in nasopharyngeal carcinoma (NPC). Therefore, we aimed to investigate whether KDM4A affects NPC progression by regulating the HIF1α/DDIT4/mTOR signaling pathway. First, NPC and adjacent tissue samples were collected, and KDM4A protein expression was examined by immunohistochemistry. Then, the interactions among KDM4A, HIF1α and DDIT4 were assessed. Gain- and loss-of-function approaches were used to alter KDM4A, HIF1α and DDIT4 expression in NPC cells. The mechanism of KDM4A in NPC was evaluated both in vivo and in vitro via RT-qPCR, Western blot analysis, MTT assay, Transwell assay, flow cytometry and tumor formation experiments. KDM4A, HIF1α, and DDIT4 were highly expressed in NPC tissues and cells. Mechanistically, KDM4A inhibited the enrichment of histone H3 lysine 9 trimethylation (H3K9me3) in the HIF1α promoter region and thus inhibited the methylation of HIF1α to promote HIF1α expression, thus upregulating DDIT4 and activating the mTOR signaling pathway. Overexpression of KDM4A, HIF1α, or DDIT4 or activation of the mTOR signaling pathway promoted SUNE1 cell proliferation, migration, and invasion but inhibited apoptosis. KDM4A silencing blocked the mTOR signaling pathway by inhibiting the HIF1α/DDIT4 axis to inhibit the growth of SUNE1 cells in vivo. Collectively, KDM4A silencing could inhibit NPC progression by blocking the activation of the HIF1α/DDIT4/mTOR signaling pathway by increasing H3K9me3, highlighting a promising therapeutic target for NPC.
    DOI:  https://doi.org/10.1038/s12276-021-00657-0
  38. iScience. 2021 Aug 20. 24(8): 102855
      Single-cell RNA sequencing (scRNA-seq) has become a revolutionary technology to characterize cells under different biological conditions. Unlike bulk RNA-seq, gene expression from scRNA-seq is highly sparse due to limited sequencing depth per cell. This is worsened by tossing away a significant portion of reads that attribute to gene quantification. To overcome data sparsity and fully utilize original reads, we propose scSimClassify, a reference-free and alignment-free approach to classify cell types with k-mer level features. The compressed k-mer groups (CKGs), identified by the simhash method, contain k-mers with similar abundance profiles and serve as the cells' features. Our experiments demonstrate that CKG features lend themselves to better performance than gene expression features in scRNA-seq classification accuracy in the majority of experimental cases. Because CKGs are derived from raw reads without alignment to reference genome, scSimClassify offers an effective alternative to existing methods especially when reference genome is incomplete or insufficient to represent subject genomes.
    Keywords:  algorithms; bioinformatics; transcriptomics
    DOI:  https://doi.org/10.1016/j.isci.2021.102855