Endocr Relat Cancer. 2021 Oct 01. pii: ERC-21-0085.R1. [Epub ahead of print]
Salma Kaochar,
Aleksandra Rusin,
Christopher Foley,
Kimal Rajapakshe,
Matthew Robertson,
Darlene Skapura,
Cammy Mason,
Karen BermandeRuiz,
Alexey Mikhailovich Tyryshkin,
Jenny Deng,
Jin Na Shin,
Warren Fiskus,
Jianrong Dong,
Shixia Huang,
Nora M Navone,
Christel M Davis,
Erik A Ehli,
Cristian Coarfa,
Nicholas Mitsiades.
Castration-resistant prostate cancer (CRPC) remains highly lethal and in need of novel, actionable therapeutic targets. The pioneer factor GATA2 is a significant prostate cancer (PC) driver and linked to poor prognosis. GATA2 directly promotes androgen receptor (AR) gene expression (both full-length and splice-variant) and facilitates AR binding to chromatin, recruitment of coregulators, and target gene transcription. Unfortunately, there is no clinically applicable GATA2 inhibitor available at the moment. Using a bioinformatics algorithm, we screened in silico 2,650 clinically relevant drugs for a potential GATA2 inhibitor. Validation studies used cytotoxicity assays (MTT), global gene expression analysis, reporter assay, reverse phase protein array analysis (RPPA), and immunoblotting. We examined target engagement via cellular thermal shift assay (CETSA), ChIP-qPCR, and GATA2 DNA-binding assay. We identified the vasodilator dilazep as a potential GATA2 inhibitor and confirmed on-target activity via CETSA. Dilazep exerted anticancer activity across a broad panel of GATA2-dependent PC cell lines in vitro and in a PDX model in vivo. Dilazep inhibited GATA2 recruitment to chromatin and suppressed the cell cycle program, transcriptional programs driven by GATA2, AR, and c-MYC, and the expression of several oncogenic drivers, including AR, c-MYC, FOXM1, CENPF, EZH2, UBE2C, and RRM2, as well as of several mediators of metastasis, DNA damage repair and stemness. In conclusion, we provide, via an extensive compendium of methodologies, proof-of-principle that a small molecule can inhibit GATA2 function and suppress its downstream AR, c-MYC, and other PC-driving effectors. We propose GATA2 as a therapeutic target in CRPC.