bims-crepig Biomed News
on Chromatin regulation and epigenetics in cell fate and cancer
Issue of 2022‒07‒24
twenty-one papers selected by
Connor Rogerson
University of Cambridge


  1. Mol Cell. 2022 Jul 13. pii: S1097-2765(22)00610-4. [Epub ahead of print]
      During gene transcription, RNA polymerase II (RNA Pol II) passes nucleosomes with the help of various elongation factors. Here, we show that RNA Pol II achieves efficient nucleosome passage when the human elongation factors DSIF, PAF1 complex (PAF), RTF1, SPT6, and TFIIS are present. The cryo-EM structure of an intermediate of the nucleosome passage shows a partially unraveled hexasome that lacks the proximal H2A-H2B dimer and interacts with the RNA Pol II jaw, DSIF, and the CTR9trestle helix. RNA Pol II adopts a backtracked state with the RNA 3' end dislodged from the active site and bound in the RNA Pol II pore. Additional structures and biochemical data show that human TFIIS enters the RNA Pol II pore and stimulates the cleavage of the backtracked RNA and nucleosome passage.
    Keywords:  H2A-H2B dimer; RNA Pol II; RNA polymerase II; TFIIS; backtracking; chromatin; hexasome; nucleosome; nucleosome passage; nucleus; transcription; transcription elongation
    DOI:  https://doi.org/10.1016/j.molcel.2022.06.027
  2. Mol Cell. 2022 Jul 15. pii: S1097-2765(22)00612-8. [Epub ahead of print]
      Regulatory elements activate promoters by recruiting transcription factors (TFs) to specific motifs. Notably, TF-DNA interactions often depend on cooperativity with colocalized partners, suggesting an underlying cis-regulatory syntax. To explore TF cooperativity in mammals, we analyze ∼500 mouse and human primary cells by combining an atlas of TF motifs, footprints, ChIP-seq, transcriptomes, and accessibility. We uncover two TF groups that colocalize with most expressed factors, forming stripes in hierarchical clustering maps. The first group includes lineage-determining factors that occupy DNA elements broadly, consistent with their key role in tissue-specific transcription. The second one, dubbed universal stripe factors (USFs), comprises ∼30 SP, KLF, EGR, and ZBTB family members that recognize overlapping GC-rich sequences in all tissues analyzed. Knockouts and single-molecule tracking reveal that USFs impart accessibility to colocalized partners and increase their residence time. Mammalian cells have thus evolved a TF superfamily with overlapping DNA binding that facilitate chromatin accessibility.
    Keywords:  DNA motifs; chromatin accessibility; enhancer syntax; gene expression; mammalian genomes; regulatory elements; single molecule tracking; transcription factors
    DOI:  https://doi.org/10.1016/j.molcel.2022.06.029
  3. Nucleic Acids Res. 2022 Jul 18. pii: gkac582. [Epub ahead of print]
      Nuclease-inactivated CRISPR/Cas-based (dCas-based) systems have emerged as powerful technologies to synthetically reshape the human epigenome and gene expression. Despite the increasing adoption of these platforms, their relative potencies and mechanistic differences are incompletely characterized, particularly at human enhancer-promoter pairs. Here, we systematically compared the most widely adopted dCas9-based transcriptional activators, as well as an activator consisting of dCas9 fused to the catalytic core of the human CBP protein, at human enhancer-promoter pairs. We find that these platforms display variable relative expression levels in different human cell types and that their transactivation efficacies vary based upon the effector domain, effector recruitment architecture, targeted locus and cell type. We also show that each dCas9-based activator can induce the production of enhancer RNAs (eRNAs) and that this eRNA induction is positively correlated with downstream mRNA expression from a cognate promoter. Additionally, we use dCas9-based activators to demonstrate that an intrinsic transcriptional and epigenetic reciprocity can exist between human enhancers and promoters and that enhancer-mediated tracking and engagement of a downstream promoter can be synthetically driven by targeting dCas9-based transcriptional activators to an enhancer. Collectively, our study provides new insights into the enhancer-mediated control of human gene expression and the use of dCas9-based activators.
    DOI:  https://doi.org/10.1093/nar/gkac582
  4. Genome Res. 2022 Jul 20. pii: gr.276766.122. [Epub ahead of print]
      Massively parallel reporter assays (MPRAs) test the capacity of putative gene regulatory elements to drive transcription on a genome-wide scale. Most gene regulatory activity occurs within accessible chromatin, and recently described methods have combined assays that capture these regions, such as assay for transposase-accessible chromatin using sequencing (ATAC-seq), with self-transcribing active regulatory region sequencing (STARR-seq) to selectively assay the regulatory potential of accessible DNA (ATAC-STARR-seq). Here, we report an integrated approach that quantifies activating and silencing regulatory activity, chromatin accessibility, and transcription factor (TF) occupancy with one assay using ATAC-STARR-seq. Our strategy, including important updates to the ATAC-STARR-seq assay and workflow, enabled high-resolution testing of ~50 million unique DNA fragments tiling ~101,000 accessible chromatin regions in human lymphoblastoid cells. We discovered that 30% of all accessible regions contain an activator, a silencer or both. Although few MPRA studies have explored silencing activity, we demonstrate silencers occur at similar frequencies to activators, and they represent a distinct functional group enriched for unique TF motifs and repressive histone modifications. We further show that Tn5 cut-site frequencies are retained in the ATAC-STARR plasmid library compared to standard ATAC-seq, enabling TF occupancy to be ascertained from ATAC-STARR data. With this approach, we found that activators and silencers cluster by distinct TF footprint combinations and these groups of activity represent different gene regulatory networks of immune cell function. Altogether, these data highlight the multi-layered capabilities of ATAC-STARR-seq to comprehensively investigate the regulatory landscape of the human genome all from a single DNA fragment source.
    DOI:  https://doi.org/10.1101/gr.276766.122
  5. Nat Commun. 2022 Jul 21. 13(1): 4221
      Sonic hedgehog (Shh) is essential for limb development, and the mechanisms that govern the propagation and maintenance of its expression has been well studied; however, the mechanisms that govern the initiation of Shh expression are incomplete. Here we report that ETV2 initiates Shh expression by changing the chromatin status of the developmental limb enhancer, ZRS. Etv2 expression precedes Shh in limb buds, and Etv2 inactivation prevents the opening of limb chromatin, including the ZRS, resulting in an absence of Shh expression. Etv2 overexpression in limb buds causes nucleosomal displacement at the ZRS, ectopic Shh expression, and polydactyly. Areas of nucleosome displacement coincide with ETS binding site clusters. ETV2 also functions as a transcriptional activator of ZRS and is antagonized by ETV4/5 repressors. Known human polydactyl mutations introduce novel ETV2 binding sites in the ZRS, suggesting that ETV2 dosage regulates ZRS activation. These studies identify ETV2 as a pioneer transcription factor (TF) regulating the onset of Shh expression, having both a chromatin regulatory role and a transcriptional activation role.
    DOI:  https://doi.org/10.1038/s41467-022-31848-6
  6. Nat Genet. 2022 Jul 21.
      Most endogenous retroviruses (ERVs) in mammals are incapable of retrotransposition; therefore, why ERV derepression is associated with lethality during early development has been a mystery. Here, we report that rapid and selective degradation of the heterochromatin adapter protein TRIM28 triggers dissociation of transcriptional condensates from loci encoding super-enhancer (SE)-driven pluripotency genes and their association with transcribed ERV loci in murine embryonic stem cells. Knockdown of ERV RNAs or forced expression of SE-enriched transcription factors rescued condensate localization at SEs in TRIM28-degraded cells. In a biochemical reconstitution system, ERV RNA facilitated partitioning of RNA polymerase II and the Mediator coactivator into phase-separated droplets. In TRIM28 knockout mouse embryos, single-cell RNA-seq analysis revealed specific depletion of pluripotent lineages. We propose that coding and noncoding nascent RNAs, including those produced by retrotransposons, may facilitate 'hijacking' of transcriptional condensates in various developmental and disease contexts.
    DOI:  https://doi.org/10.1038/s41588-022-01132-w
  7. Nat Commun. 2022 Jul 22. 13(1): 4247
      The human genome contains regulatory elements, such as enhancers, that are often rewired by cancer cells for the activation of genes that promote tumorigenesis and resistance to therapy. This is especially true for cancers that have little or no known driver mutations within protein coding genes, such as ovarian cancer. Herein, we utilize an integrated set of genomic and epigenomic datasets to identify clinically relevant super-enhancers that are preferentially amplified in ovarian cancer patients. We systematically probe the top 86 super-enhancers, using CRISPR-interference and CRISPR-deletion assays coupled to RNA-sequencing, to nominate two salient super-enhancers that drive proliferation and migration of cancer cells. Utilizing Hi-C, we construct chromatin interaction maps that enable the annotation of direct target genes for these super-enhancers and confirm their activity specifically within the cancer cell compartment of human tumors using single-cell genomics data. Together, our multi-omic approach examines a number of fundamental questions about how regulatory information encoded into super-enhancers drives gene expression networks that underlie the biology of ovarian cancer.
    DOI:  https://doi.org/10.1038/s41467-022-31919-8
  8. Nat Commun. 2022 Jul 20. 13(1): 4196
      A comprehensive characterization of epigenomic organization in the embryonic mouse forebrain will enhance our understanding of neurodevelopment and provide insight into mechanisms of neurological disease. Here we collected single-cell chromatin accessibility profiles from four distinct neurogenic regions of the embryonic mouse forebrain using single nuclei ATAC-Seq (snATAC-Seq). We identified thousands of differentially accessible peaks, many restricted to distinct progenitor cell types or brain regions. We integrated snATAC-Seq and single cell transcriptome data to characterize changes of chromatin accessibility at enhancers and promoters with associated transcript abundance. Multi-modal integration of histone modifications (CUT&Tag and CUT&RUN), promoter-enhancer interactions (Capture-C) and high-order chromatin structure (Hi-C) extended these initial observations. This dataset reveals a diverse chromatin landscape with region-specific regulatory mechanisms and genomic interactions in distinct neurogenic regions of the embryonic mouse brain and represents an extensive public resource of a 'ground truth' epigenomic landscape at this critical stage of neurogenesis.
    DOI:  https://doi.org/10.1038/s41467-022-31793-4
  9. Genome Res. 2022 Jul 21.
      Genomic rearrangements are known to result in proto-oncogene deregulation in many cancers, but the link to 3D genome structure remains poorly understood. Here, we used the highly predictive heteromorphic polymer (HiP-HoP) model to predict chromatin conformations at the proto-oncogene CCND1 in healthy and malignant B cells. After confirming that the model gives good predictions of Hi-C data for the nonmalignant human B cell-derived cell line GM12878, we generated predictions for two cancer cell lines, U266 and Z-138. These possess genome rearrangements involving CCND1 and the immunoglobulin heavy locus (IGH), which we mapped using targeted genome sequencing. Our simulations showed that a rearrangement in U266 cells where a single IGH super-enhancer is inserted next to CCND1 leaves the local topologically associated domain (TAD) structure intact. We also observed extensive changes in enhancer-promoter interactions within the TAD, suggesting that it is the downstream chromatin remodeling which gives rise to the oncogene activation, rather than the presence of the inserted super-enhancer DNA sequence per se. Simulations of the IGH-CCND1 reciprocal translocation in Z-138 cells revealed that an oncogenic fusion TAD is created, encompassing CCND1 and the IGH super-enhancers. We predicted how the structure and expression of CCND1 changes in these different cell lines, validating this using qPCR and fluorescence in situ hybridization microscopy. Our work demonstrates the power of polymer simulations to predict differences in chromatin interactions and gene expression for different translocation breakpoints.
    DOI:  https://doi.org/10.1101/gr.276028.121
  10. Development. 2022 Jul 15. pii: dev200547. [Epub ahead of print]149(14):
      The transcription factor SOX2 is a vital regulator of stem cell activity in various developing and adult tissues. Mounting evidence has demonstrated the importance of SOX2 in regulating the induction and maintenance of stemness as well as in controlling cell proliferation, lineage decisions and differentiation. Recent studies have revealed that the ability of SOX2 to regulate these stem cell features involves its function as a pioneer factor, with the capacity to target nucleosomal DNA, modulate chromatin accessibility and prepare silent genes for subsequent activation. Moreover, although SOX2 binds to similar DNA motifs in different stem cells, its multifaceted and cell type-specific functions are reliant on context-dependent features. These cell type-specific properties include variations in partner factor availability and SOX2 protein expression levels. In this Primer, we discuss recent findings that have increased our understanding of how SOX2 executes its versatile functions as a master regulator of stem cell activities.
    Keywords:  ChIP-seq; Chromatin binding; Pioneer factor; SOX2; Stem cell regulation
    DOI:  https://doi.org/10.1242/dev.200547
  11. Proc Natl Acad Sci U S A. 2022 Jul 19. 119(29): e2202015119
      Epigenetic dysregulation is a universal feature of cancer that results in altered patterns of gene expression that drive malignancy. Brain tumors exhibit subtype-specific epigenetic alterations; however, the molecular mechanisms responsible for these diverse epigenetic states remain unclear. Here, we show that the developmental transcription factor Sox9 differentially regulates epigenomic states in high-grade glioma (HGG) and ependymoma (EPN). Using our autochthonous mouse models, we found that Sox9 suppresses HGG growth and expands associated H3K27ac states, while promoting ZFTA-RELA (ZRFUS) EPN growth and diminishing H3K27ac states. These contrasting roles for Sox9 correspond with protein interactions with histone deacetylating complexes in HGG and an association with the ZRFUS oncofusion in EPN. Mechanistic studies revealed extensive Sox9 and ZRFUS promoter co-occupancy, indicating functional synergy in promoting EPN tumorigenesis. Together, our studies demonstrate how epigenomic states are differentially regulated in distinct subtypes of brain tumors, while revealing divergent roles for Sox9 in HGG and EPN tumorigenesis.
    Keywords:  ependymoma; epigenetics; high-grade glioma; histone; transcription
    DOI:  https://doi.org/10.1073/pnas.2202015119
  12. Genome Biol. 2022 07 19. 23(1): 160
      Despite recent developments, it is hard to profile all multi-omics single-cell data modalities on the same cell. Thus, huge amounts of single-cell genomics data of unpaired observations on different cells are generated. We propose a method named UnpairReg for the regression analysis on unpaired observations to integrate single-cell multi-omics data. On real and simulated data, UnpairReg provides an accurate estimation of cell gene expression where only chromatin accessibility data is available. The cis-regulatory network inferred from UnpairReg is highly consistent with eQTL mapping. UnpairReg improves cell type identification accuracy by joint analysis of single-cell gene expression and chromatin accessibility data.
    Keywords:  Cis-regulatory network; Regression model on unpaired observations; Single-cell multi-omics
    DOI:  https://doi.org/10.1186/s13059-022-02726-7
  13. Elife. 2022 Jul 18. pii: e73396. [Epub ahead of print]11
      Expression of the AR splice variant, AR-V7, in prostate cancer is correlated with poor patient survival and resistance to AR targeted therapies and taxanes. Currently, there is no specific inhibitor of AR-V7, while the molecular mechanisms regulating its biological function are not well elucidated. Here we report that AR-V7 has unique biological features that functionally differentiate it from canonical AR-fl or from the second most prevalent variant, AR-v567. First, AR-V7 exhibits fast nuclear import kinetics via a pathway distinct from the nuclear localization signal dependent importin-a/b pathway used by AR-fl and AR-v567. We also show that the dimerization box domain, known to mediate AR dimerization and transactivation, is required for AR-V7 nuclear import but not for AR-fl. Once in the nucleus, AR-V7 is transcriptionally active, yet exhibits unusually high intranuclear mobility and transient chromatin interactions, unlike the stable chromatin association of liganded AR-fl. The high intranuclear mobility of AR-V7 together with its high transcriptional output, suggest a Hit-and-Run mode of transcription. Our findings reveal unique mechanisms regulating AR-V7 activity, offering the opportunity to develop selective therapeutic interventions.
    Keywords:  cancer biology; human
    DOI:  https://doi.org/10.7554/eLife.73396
  14. Methods Mol Biol. 2022 ;2532 293-309
      The spatial organization of the genome plays a critical role in cell-specific biological functions such as gene expression. Existing genome-wide technologies reveal a dynamic interplay between chromatin looping and gene regulation, but the mechanisms by which regulatory interactions between genetic elements are established or maintained remain unclear. Here, we present CLOuD9, a CRISPR-based technology that can create de novo, pairwise chromatin interactions in cells. This technique for chromatin loop reorganization employs dCas9-targeting and ABI1-PYL heterodimerization. It is reversible, but can also establish epigenetic memory under certain conditions, which provides a way to dissect gene regulation mechanisms.
    Keywords:  CRISPR; Chromatin architecture; Epigenetics; Gene regulation; Genome organization
    DOI:  https://doi.org/10.1007/978-1-0716-2497-5_14
  15. Nat Commun. 2022 Jul 18. 13(1): 4148
      Pancreatic differentiation from human pluripotent stem cells (hPSCs) provides promising avenues for investigating development and treating diseases. N6-methyladenosine (m6A) is the most prevalent internal messenger RNA (mRNA) modification and plays pivotal roles in regulation of mRNA metabolism, while its functions remain elusive. Here, we profile the dynamic landscapes of m6A transcriptome-wide during pancreatic differentiation. Next, we generate knockout hPSC lines of the major m6A demethylase ALKBH5, and find that ALKBH5 plays significant regulatory roles in pancreatic organogenesis. Mechanistic studies reveal that ALKBH5 deficiency reduces the mRNA stability of key pancreatic transcription factors in an m6A and YTHDF2-dependent manner. We further identify that ALKBH5 cofactor α-ketoglutarate can be applied to enhance differentiation. Collectively, our findings identify ALKBH5 as an essential regulator of pancreatic differentiation and highlight that m6A modification-mediated mRNA metabolism presents an important layer of regulation during cell-fate specification and holds great potentials for translational applications.
    DOI:  https://doi.org/10.1038/s41467-022-31698-2
  16. Oncogene. 2022 Jul 21.
      Enhancer of zeste homolog 2 (EZH2) and SET domain bifurcated 1 (SETDB1, also known as ESET) are oncogenic methyltransferases implicated in a number of human cancers. These enzymes typically function as epigenetic repressors of target genes by methylating histone H3 K27 and H3-K9 residues, respectively. Here, we show that EZH2 and SETDB1 are essential to proliferation in 3 SCC cell lines, HSC-5, FaDu, and Cal33. Additionally, we find both of these proteins highly expressed in an aggressive stem-like SCC sub-population. Depletion of either EZH2 or SETDB1 disrupts these stem-like cells and their associated phenotypes of spheroid formation, invasion, and tumor growth. We show that SETDB1 regulates this SCC stem cell phenotype through cooperation with ΔNp63α, an oncogenic isoform of the p53-related transcription factor p63. Furthermore, EZH2 is upstream of both SETDB1 and ΔNp63α, activating these targets via repression of the tumor suppressor RUNX3. We show that targeting this pathway with inhibitors of EZH2 results in activation of RUNX3 and repression of both SETDB1 and ΔNp63α, antagonizing the SCC cancer stem cell phenotype. This work highlights a novel pathway that drives an aggressive cancer stem cell phenotype and demonstrates a means of pharmacological intervention.
    DOI:  https://doi.org/10.1038/s41388-022-02417-4
  17. Sci Adv. 2022 Jul 15. 8(28): eabo3583
      Pluripotent cells are a transient population of the mammalian embryo dependent on transcription factors, such as OCT4 and NANOG, which maintain pluripotency while suppressing lineage specification. However, these factors are also expressed during early phases of differentiation, and their role in the transition from pluripotency to lineage specification is largely unknown. We found that pluripotency factors play a dual role in regulating key lineage specifiers, initially repressing their expression and later being required for their proper activation. We show that Oct4 is necessary for activation of HoxB genes during differentiation of embryonic stem cells and in the embryo. In addition, we show that the HoxB cluster is coordinately regulated by OCT4 binding sites located at the 3' end of the cluster. Our results show that core pluripotency factors are not limited to maintaining the precommitted epiblast but are also necessary for the proper deployment of subsequent developmental programs.
    DOI:  https://doi.org/10.1126/sciadv.abo3583
  18. Nucleic Acids Res. 2022 Jul 15. pii: gkac601. [Epub ahead of print]
      Signal transduction pathways often involve transcription factors that promote activation of defined target gene sets. The transcription factor RBPJ is the central player in Notch signaling and either forms an activator complex with the Notch intracellular domain (NICD) or a repressor complex with corepressors like KYOT2/FHL1. The balance between these two antagonizing RBPJ-complexes depends on the activation state of the Notch receptor regulated by cell-to-cell interaction, ligand binding and proteolytic cleavage events. Here, we depleted RBPJ in mature T-cells lacking active Notch signaling and performed RNA-Seq, ChIP-Seq and ATAC-seq analyses. RBPJ depletion leads to upregulation of many Notch target genes. Ectopic expression of NICD1 activates several Notch target genes and enhances RBPJ occupancy. Based on gene expression changes and RBPJ occupancy we define four different clusters, either RBPJ- and/or Notch-regulated genes. Importantly, we identify early (Hes1 and Hey1) and late Notch-responsive genes (IL2ra). Similarly, to RBPJ depletion, interfering with transcriptional repression by squelching with cofactor KYOT2/FHL1, leads to upregulation of Notch target genes. Taken together, RBPJ is not only an essential part of the Notch co-activator complex but also functions as a repressor in a Notch-independent manner.
    DOI:  https://doi.org/10.1093/nar/gkac601
  19. Sci Adv. 2022 Jul 15. 8(28): eabo5668
      Understanding the regulatory network of cell fate acquisition remains a major challenge. Using the induction of surface epithelium (SE) from human embryonic stem cells as a paradigm, we show that the dynamic changes in morphology-related genes (MRGs) closely correspond to SE fate transitions. The marked remodeling of cytoskeleton indicates the initiation of SE differentiation. By integrating promoter interactions, epigenomic features, and transcriptome, we delineate an SE-specific cis-regulatory network and identify grainyhead-like 3 (GRHL3) as an initiation factor sufficient to drive SE commitment. Mechanically, GRHL3 primes the SE chromatin accessibility landscape and activates SE-initiating gene expression. In addition, the evaluation of GRHL3-mediated promoter interactions unveils a positive feedback loop of GRHL3 and bone morphogenetic protein 4 on SE fate decisions. Our work proposes a concept that MRGs could be used to identify cell fate transitions and provides insights into regulatory principles of SE lineage development and stem cell-based regenerative medicine.
    DOI:  https://doi.org/10.1126/sciadv.abo5668
  20. Proc Natl Acad Sci U S A. 2022 Jul 12. 119(28): e2118938119
      The vertebrate inner ear arises from a pool of progenitors with the potential to contribute to all the sense organs and cranial ganglia in the head. Here, we explore the molecular mechanisms that control ear specification from these precursors. Using a multiomics approach combined with loss-of-function experiments, we identify a core transcriptional circuit that imparts ear identity, along with a genome-wide characterization of noncoding elements that integrate this information. This analysis places the transcription factor Sox8 at the top of the ear determination network. Introducing Sox8 into the cranial ectoderm not only converts non-ear cells into ear progenitors but also activates the cellular programs for ear morphogenesis and neurogenesis. Thus, Sox8 has the unique ability to remodel transcriptional networks in the cranial ectoderm toward ear identity.
    Keywords:  ear; ectoderm; gene regulatory network; sensory placode; transcription factor
    DOI:  https://doi.org/10.1073/pnas.2118938119
  21. Sci Adv. 2022 Jul 08. 8(27): eabk0793
      HP1 proteins traverse a complex and crowded chromatin landscape to bind with low affinity but high specificity to histone H3K9 methylation (H3K9me) and form transcriptionally inactive genomic compartments called heterochromatin. Here, we visualize single-molecule dynamics of an HP1 homolog, the fission yeast Swi6, in its native chromatin environment. By tracking single Swi6 molecules, we identify mobility states that map to discrete biochemical intermediates. Using Swi6 mutants that perturb H3K9me recognition, oligomerization, or nucleic acid binding, we determine how each biochemical property affects protein dynamics. We estimate that Swi6 recognizes H3K9me3 with ~94-fold specificity relative to unmodified nucleosomes in living cells. While nucleic acid binding competes with Swi6 oligomerization, as few as four tandem chromodomains can overcome these inhibitory effects to facilitate Swi6 localization at heterochromatin formation sites. Our studies indicate that HP1 oligomerization is essential to form dynamic, higher-order complexes that outcompete nucleic acid binding to enable specific H3K9me recognition.
    DOI:  https://doi.org/10.1126/sciadv.abk0793