bims-crepig Biomed News
on Chromatin regulation and epigenetics in cell fate and cancer
Issue of 2022–07–31
seventeen papers selected by
Connor Rogerson, University of Cambridge



  1. Nat Commun. 2022 Jul 23. 13(1): 4257
      Fate-determining transcription factors (TFs) can promote lineage-restricted transcriptional programs from common progenitor states. The inner cell mass (ICM) of mouse blastocysts co-expresses the TFs NANOG and GATA6, which drive the bifurcation of the ICM into either the epiblast (Epi) or the primitive endoderm (PrE), respectively. Here, we induce GATA6 in embryonic stem cells-that also express NANOG-to characterize how a state of co-expression of opposing TFs resolves into divergent lineages. Surprisingly, we find that GATA6 and NANOG co-bind at the vast majority of Epi and PrE enhancers, a phenomenon we also observe in blastocysts. The co-bound state is followed by eviction and repression of Epi TFs, and quick remodeling of chromatin and enhancer-promoter contacts thus establishing the PrE lineage while repressing the Epi fate. We propose that co-binding of GATA6 and NANOG at shared enhancers maintains ICM plasticity and promotes the rapid establishment of Epi- and PrE-specific transcriptional programs.
    DOI:  https://doi.org/10.1038/s41467-022-31938-5
  2. Nucleic Acids Res. 2022 Jul 29. pii: gkac652. [Epub ahead of print]
      The transcription factor SOX9 is activated at the onset of endothelial-to-mesenchymal transition (EndMT) during embryonic development and in pathological conditions. Its roles in regulating these processes, however, are not clear. Using human umbilical vein endothelial cells (HUVECs) as an EndMT model, we show that SOX9 expression alone is sufficient to activate mesenchymal genes and steer endothelial cells towards a mesenchymal fate. By genome-wide mapping of the chromatin landscape, we show that SOX9 displays features of a pioneer transcription factor, such as opening of chromatin and leading to deposition of active histone modifications at silent chromatin regions, guided by SOX dimer motifs and H2A.Z enrichment. We further observe highly transient and dynamic SOX9 binding, possibly promoted through its eviction by histone phosphorylation. However, while SOX9 binding is dynamic, changes in the chromatin landscape and cell fate induced by SOX9 are persistent. Finally, our analysis of single-cell chromatin accessibility indicates that SOX9 opens chromatin to drive EndMT in atherosclerotic lesions in vivo. This study provides new insight into key molecular functions of SOX9 and mechanisms of EndMT and highlights the crucial developmental role of SOX9 and relevance to human disease.
    DOI:  https://doi.org/10.1093/nar/gkac652
  3. Nucleic Acids Res. 2022 Jul 25. pii: gkac613. [Epub ahead of print]
      Although originally described as transcriptional activator, SPI1/PU.1, a major player in haematopoiesis whose alterations are associated with haematological malignancies, has the ability to repress transcription. Here, we investigated the mechanisms underlying gene repression in the erythroid lineage, in which SPI1 exerts an oncogenic function by blocking differentiation. We show that SPI1 represses genes by binding active enhancers that are located in intergenic or gene body regions. HDAC1 acts as a cooperative mediator of SPI1-induced transcriptional repression by deacetylating SPI1-bound enhancers in a subset of genes, including those involved in erythroid differentiation. Enhancer deacetylation impacts on promoter acetylation, chromatin accessibility and RNA pol II occupancy. In addition to the activities of HDAC1, polycomb repressive complex 2 (PRC2) reinforces gene repression by depositing H3K27me3 at promoter sequences when SPI1 is located at enhancer sequences. Moreover, our study identified a synergistic relationship between PRC2 and HDAC1 complexes in mediating the transcriptional repression activity of SPI1, ultimately inducing synergistic adverse effects on leukaemic cell survival. Our results highlight the importance of the mechanism underlying transcriptional repression in leukemic cells, involving complex functional connections between SPI1 and the epigenetic regulators PRC2 and HDAC1.
    DOI:  https://doi.org/10.1093/nar/gkac613
  4. Nucleic Acids Res. 2022 Jul 29. pii: gkac642. [Epub ahead of print]
      DNA methylation (5-methylcytosine (5mC)) is critical for genome stability and transcriptional regulation in mammals. The discovery that ten-eleven translocation (TET) proteins catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) revolutionized our perspective on the complexity and regulation of DNA modifications. However, to what extent the regulatory functions of TET1 can be attributed to its catalytic activity remains unclear. Here, we use genome engineering and quantitative multi-omics approaches to dissect the precise catalytic vs. non-catalytic functions of TET1 in murine embryonic stem cells (mESCs). Our study identifies TET1 as an essential interaction hub for multiple chromatin modifying complexes and a global regulator of histone modifications. Strikingly, we find that the majority of transcriptional regulation depends on non-catalytic functions of TET1. In particular, we show that TET1 is critical for the establishment of H3K9me3 and H4K20me3 at endogenous retroviral elements (ERVs) and their silencing that is independent of its canonical role in DNA demethylation. Furthermore, we provide evidence that this repression of ERVs depends on the interaction between TET1 and SIN3A. In summary, we demonstrate that the non-catalytic functions of TET1 are critical for regulation of gene expression and the silencing of endogenous retroviruses in mESCs.
    DOI:  https://doi.org/10.1093/nar/gkac642
  5. Nucleic Acids Res. 2022 Jul 25. pii: gkac624. [Epub ahead of print]
      The transcriptional coactivator YAP is emerging as a master regulator of cell growth. In the liver, YAP activity is linked to hepatomegaly, regeneration, dedifferentiation, and aggressive tumor growth. Here we present genomic studies to address how YAP may elicit such profound biological changes in murine models. YAP bound the genome in a TEAD-dependent manner, either at loci constitutively occupied by TEAD or by pioneering enhancers, which comprised a fraction of HNF4a/FOXA-bound embryonic enhancers active during embryonic development but silent in the adult. YAP triggered transcription on promoters by recruiting BRD4, enhancing H3K122 acetylation, and promoting RNApol2 loading and pause-release. YAP also repressed HNF4a target genes by binding to their promoters and enhancers, thus preventing RNApol2 pause-release. YAP activation led to the induction of hepatocyte proliferation, accompanied by tissue remodeling, characterized by polarized macrophages, exhausted T-lymphocytes and dedifferentiation of endothelial cells into proliferative progenitors. Overall, these analyses suggest that YAP is a master regulator of liver function that reshapes the enhancer landscape to control transcription of genes involved in metabolism, proliferation, and inflammation, subverts lineage specification programs by antagonizing HNF4a and modulating the immune infiltrate and the vascular architecture of the liver.
    DOI:  https://doi.org/10.1093/nar/gkac624
  6. Nat Commun. 2022 Jul 29. 13(1): 4355
      Transcriptional regulation by RNA polymerase II is associated with changes in chromatin structure. Activated and promoter-bound heat shock transcription factor 1 (HSF1) recruits transcriptional co-activators, including histone-modifying enzymes; however, the mechanisms underlying chromatin opening remain unclear. Here, we demonstrate that HSF1 recruits the TRRAP-TIP60 acetyltransferase complex in HSP72 promoter during heat shock in a manner dependent on phosphorylation of HSF1-S419. TRIM33, a bromodomain-containing ubiquitin ligase, is then recruited to the promoter by interactions with HSF1 and a TIP60-mediated acetylation mark, and cooperates with the related factor TRIM24 for mono-ubiquitination of histone H2B on K120. These changes in histone modifications are triggered by phosphorylation of HSF1-S419 via PLK1, and stabilize the HSF1-transcription complex in HSP72 promoter. Furthermore, HSF1-S419 phosphorylation is constitutively enhanced in and promotes proliferation of melanoma cells. Our results provide mechanisms for HSF1 phosphorylation-dependent establishment of an active chromatin status, which is important for tumorigenesis.
    DOI:  https://doi.org/10.1038/s41467-022-32034-4
  7. J Neurosci. 2022 Jul 22. pii: JN-RM-2533-21. [Epub ahead of print]
      Schwann cells play a critical role after peripheral nerve injury by clearing myelin debris, forming axon-guiding Bands of Bungner, and re-myelinating regenerating axons. Schwann cells undergo epigenomic remodeling to differentiate into a repair state that expresses unique genes, some of which are not expressed at other stages of Schwann cell development. We previously identified a set of enhancers that are activated in Schwann cells after nerve injury, and we determined if these enhancers are pre-programmed into the Schwann cell epigenome as poised enhancers prior to injury. Poised enhancers share many attributes of active enhancers, such as open chromatin, but are marked by repressive H3K27 trimethylation (H3K27me3) rather than H3K27ac. We find that most injury-induced enhancers are not marked as poised enhancers prior to injury indicating that injury-induced enhancers are not pre-programmed in the Schwann cell epigenome. Injury-induced enhancers are enriched with AP-1 binding motifs, and the c-JUN subunit of AP-1 had been shown to be critical to drive the transcriptional response of Schwann cells after injury. Using in vivo ChIP-seq analysis in rat, we find that c-JUN binds to a subset of injury-induced enhancers. To test the role of specific injury-induced enhancers, we focused on c-JUN-binding enhancers upstream of the Sonic Hedgehog (Shh) gene, which is only upregulated in repair Schwann cells compared to other stages of Schwann cell development. We used targeted deletions in male/female mice to show that the enhancers are required for robust induction of the Shh gene after injury.SIGNIFICANCE STATEMENTThe pro-regenerative actions of Schwann cells after nerve injury depends on upon profound reprogramming of the epigenome. The repair state is directed by injury-induced transcription factors, like JUN, which is uniquely required after nerve injury. In this study, we test whether the injury program is pre-programmed into the epigenome as poised enhancers and define which enhancers bind JUN. Finally, we test the roles of these enhancers by performing CRISPR-mediated deletion of JUN-bound injury enhancers in the Sonic hedgehog gene. While many long range enhancers drive expression of Sonic hedgehog at different developmental stages of specific tissues, these studies identify an entirely new set of enhancers that are required for Sonic hedgehog induction in Schwann cells after injury.
    DOI:  https://doi.org/10.1523/JNEUROSCI.2533-21.2022
  8. Nat Commun. 2022 Jul 27. 13(1): 4342
      Innate immune responses rely on inducible gene expression programmes which, in contrast to steady-state transcription, are highly dependent on cohesin. Here we address transcriptional parameters underlying this cohesin-dependence by single-molecule RNA-FISH and single-cell RNA-sequencing. We show that inducible innate immune genes are regulated predominantly by an increase in the probability of active transcription, and that probabilities of enhancer and promoter transcription are coordinated. Cohesin has no major impact on the fraction of transcribed inducible enhancers, or the number of mature mRNAs produced per transcribing cell. Cohesin is, however, required for coupling the probabilities of enhancer and promoter transcription. Enhancer-promoter coupling may not be explained by spatial proximity alone, and at the model locus Il12b can be disrupted by selective inhibition of the cohesinopathy-associated BET bromodomain BD2. Our data identify discrete steps in enhancer-mediated inducible gene expression that differ in cohesin-dependence, and suggest that cohesin and BD2 may act on shared pathways.
    DOI:  https://doi.org/10.1038/s41467-022-31192-9
  9. Nat Commun. 2022 Jul 25. 13(1): 4301
      Cohesin is a major structural component of mammalian genomes and is required to maintain loop structures. While acute depletion in short-term culture models suggests a limited importance of cohesin for steady-state transcriptional circuits, long-term studies are hampered by essential functions of cohesin during replication. Here, we study genome architecture in a postmitotic differentiation setting, the differentiation of human blood monocytes (MO). We profile and compare epigenetic, transcriptome and 3D conformation landscapes during MO differentiation (either into dendritic cells or macrophages) across the genome and detect numerous architectural changes, ranging from higher level compartments down to chromatin loops. Changes in loop structures correlate with cohesin-binding, as well as epigenetic and transcriptional changes during differentiation. Functional studies show that the siRNA-mediated depletion of cohesin (and to a lesser extent also CTCF) markedly disturbs loop structures and dysregulates genes and enhancers that are primarily regulated during normal MO differentiation. In addition, gene activation programs in cohesin-depleted MO-derived macrophages are disturbed. Our findings implicate an essential function of cohesin in controlling long-term, differentiation- and activation-associated gene expression programs.
    DOI:  https://doi.org/10.1038/s41467-022-31892-2
  10. Cell Genom. 2022 Jul 13. pii: 100144. [Epub ahead of print]2(7):
      We have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks. We dissect DNA methylation processes associated with differentiation, aging, and tumorigenesis. Notably, we find that tissue-specific methylation signatures localize to binding sites for transcription factors controlling the corresponding tissue development. Age-associated hypermethylation is enriched at regions of Polycomb repression, while hypomethylation is enhanced at regions bound by cohesin complex members. Apc Min/+ polyp-associated hypermethylation affects enhancers regulating intestinal differentiation, while hypomethylation targets AP-1 binding sites. This Infinium Mouse Methylation BeadChip (version MM285) is widely accessible to the research community and will accelerate high-sample-throughput studies in this important model organism.
    DOI:  https://doi.org/10.1016/j.xgen.2022.100144
  11. Genome Biol. 2022 Jul 26. 23(1): 163
       BACKGROUND: Cytosine DNA methylation is widely described as a transcriptional repressive mark with the capacity to silence promoters. Epigenome engineering techniques enable direct testing of the effect of induced DNA methylation on endogenous promoters; however, the downstream effects have not yet been comprehensively assessed.
    RESULTS: Here, we simultaneously induce methylation at thousands of promoters in human cells using an engineered zinc finger-DNMT3A fusion protein, enabling us to test the effect of forced DNA methylation upon transcription, chromatin accessibility, histone modifications, and DNA methylation persistence after the removal of the fusion protein. We find that transcriptional responses to DNA methylation are highly context-specific, including lack of repression, as well as cases of increased gene expression, which appears to be driven by the eviction of methyl-sensitive transcriptional repressors. Furthermore, we find that some regulatory networks can override DNA methylation and that promoter methylation can cause alternative promoter usage. DNA methylation deposited at promoter and distal regulatory regions is rapidly erased after removal of the zinc finger-DNMT3A fusion protein, in a process combining passive and TET-mediated demethylation. Finally, we demonstrate that induced DNA methylation can exist simultaneously on promoter nucleosomes that possess the active histone modification H3K4me3, or DNA bound by the initiated form of RNA polymerase II.
    CONCLUSIONS: These findings have important implications for epigenome engineering and demonstrate that the response of promoters to DNA methylation is more complex than previously appreciated.
    Keywords:  CpG islands; DNA methylation; DNMT; Epigenome engineering; Promoter regulation; Zinc finger
    DOI:  https://doi.org/10.1186/s13059-022-02728-5
  12. BMC Bioinformatics. 2022 Jul 29. 23(1): 309
       BACKGROUND: Technical improvement in ATAC-seq makes it possible for high throughput profiling the chromatin states of single cells. However, data from multiple sources frequently show strong technical variations, which is referred to as batch effects. In order to perform joint analysis across multiple datasets, specialized method is required to remove technical variations between datasets while keep biological information.
    RESULTS: Here we present an algorithm named epiConv to perform joint analyses on scATAC-seq datasets. We first show that epiConv better corrects batch effects and is less prone to over-fitting problem than existing methods on a collection of PBMC datasets. In a collection of mouse brain data, we show that epiConv is capable of aligning low-depth scATAC-Seq from co-assay data (simultaneous profiling of transcriptome and chromatin) onto high-quality ATAC-seq reference and increasing the resolution of chromatin profiles of co-assay data. Finally, we show that epiConv can be used to integrate cells from different biological conditions (T cells in normal vs. germ-free mouse; normal vs. malignant hematopoiesis), which reveals hidden cell populations that would otherwise be undetectable.
    CONCLUSIONS: In this study, we introduce epiConv to integrate multiple scATAC-seq datasets and perform joint analysis on them. Through several case studies, we show that epiConv removes the batch effects and retains the biological signal. Moreover, joint analysis across multiple datasets improves the performance of clustering and differentially accessible peak calling, especially when the biological signal is weak in single dataset.
    Keywords:  Batch effects; Cell clustering; Data integration; scATAC-seq
    DOI:  https://doi.org/10.1186/s12859-022-04858-w
  13. Cell Rep. 2022 Jul 26. pii: S2211-1247(22)00945-7. [Epub ahead of print]40(4): 111136
      Mechanisms governing regional human adipose tissue (AT) development remain undefined. Here, we show that the long non-coding RNA HOTAIR (HOX transcript antisense RNA) is exclusively expressed in gluteofemoral AT, where it is essential for adipocyte development. We find that HOTAIR interacts with polycomb repressive complex 2 (PRC2) and we identify core HOTAIR-PRC2 target genes involved in adipocyte lineage determination. Repression of target genes coincides with PRC2 promoter occupancy and H3K27 trimethylation. HOTAIR is also involved in modifying the gluteal adipocyte transcriptome through alternative splicing. Gluteal-specific expression of HOTAIR is maintained by defined regions of open chromatin across the HOTAIR promoter. HOTAIR expression levels can be modified by hormonal (estrogen, glucocorticoids) and genetic variation (rs1443512 is a HOTAIR eQTL associated with reduced gynoid fat mass). These data identify HOTAIR as a dynamic regulator of the gluteal adipocyte transcriptome and epigenome with functional importance for human regional AT development.
    Keywords:  CP: Molecular biology; HOTAIR; adipogenesis; epigenetic regulation; fat distribution; lncRNA; subcutaneous adipose tissue
    DOI:  https://doi.org/10.1016/j.celrep.2022.111136
  14. Nat Commun. 2022 Jul 29. 13(1): 4418
      The inability of neurons to regenerate long axons within the CNS is a major impediment to improving outcome after spinal cord injury, stroke, and other CNS insults. Recent advances have uncovered an intrinsic program that involves coordinate regulation by multiple transcription factors that can be manipulated to enhance growth in the peripheral nervous system. Here, we use a systems genomics approach to characterize regulatory relationships of regeneration-associated transcription factors, identifying RE1-Silencing Transcription Factor (REST; Neuron-Restrictive Silencer Factor, NRSF) as a predicted upstream suppressor of a pro-regenerative gene program associated with axon regeneration in the CNS. We validate our predictions using multiple paradigms, showing that mature mice bearing cell type-specific deletions of REST or expressing dominant-negative mutant REST show improved regeneration of the corticospinal tract and optic nerve after spinal cord injury and optic nerve crush, which is accompanied by upregulation of regeneration-associated genes in cortical motor neurons and retinal ganglion cells, respectively. These analyses identify a role for REST as an upstream suppressor of the intrinsic regenerative program in the CNS and demonstrate the utility of a systems biology approach involving integrative genomics and bio-informatics to prioritize hypotheses relevant to CNS repair.
    DOI:  https://doi.org/10.1038/s41467-022-31960-7
  15. Elife. 2022 Jul 25. pii: e77352. [Epub ahead of print]11
      One-dimensional (1D) target search is a well-characterized phenomenon for many DNA binding proteins but is poorly understood for chromatin remodelers. Herein, we characterize the 1D scanning properties of SWR1, a conserved yeast chromatin remodeler that performs histone exchange on +1 nucleosomes adjacent to a nucleosome-depleted region (NDR) at gene promoters. We demonstrate that SWR1 has a kinetic binding preference for DNA of NDR length as opposed to gene-body linker length DNA. Using single and dual color single-particle tracking on DNA stretched with optical tweezers, we directly observe SWR1 diffusion on DNA. We found that various factors impact SWR1 scanning, including ATP which promotes diffusion through nucleotide binding rather than ATP hydrolysis. A DNA binding subunit, Swc2, plays an important role in the overall diffusive behavior of the complex, as the subunit in isolation retains similar, although faster, scanning properties as the whole remodeler. ATP-bound SWR1 slides until it encounters a protein roadblock, of which we tested dCas9 and nucleosomes. The median diffusion coefficient, 0.024 μm2/sec, in the regime of helical sliding, would mediate rapid encounter of NDR-flanking nucleosomes at length scales found in cellular chromatin.
    Keywords:  S. cerevisiae; chromosomes; gene expression; molecular biophysics; structural biology
    DOI:  https://doi.org/10.7554/eLife.77352
  16. Science. 2022 Jul 29. 377(6605): 489-495
      Our understanding of the physical principles organizing the genome in the nucleus is limited by the lack of tools to directly exert and measure forces on interphase chromosomes in vivo and probe their material nature. Here, we introduce an approach to actively manipulate a genomic locus using controlled magnetic forces inside the nucleus of a living human cell. We observed viscoelastic displacements over micrometers within minutes in response to near-piconewton forces, which are consistent with a Rouse polymer model. Our results highlight the fluidity of chromatin, with a moderate contribution of the surrounding material, revealing minor roles for cross-links and topological effects and challenging the view that interphase chromatin is a gel-like material. Our technology opens avenues for future research in areas from chromosome mechanics to genome functions.
    DOI:  https://doi.org/10.1126/science.abi9810
  17. Cell Death Differ. 2022 Jul 29.
      Human mesenchymal stem cells (hMSCs) can be differentiated into adipocytes and osteoblasts. The processes are driven by the rewiring of chromatin architectures and transcriptomic/epigenomic changes. Here, we induced hMSCs to adipogenic and osteogenic differentiation, and performed 2 kb resolution Hi-C experiments for chromatin loops detection. We also generated matched RNA-seq, ChIP-seq and ATAC-seq data for integrative analysis. After comprehensively comparing adipogenesis and osteogenesis, we quantitatively identified lineage-specific loops and screened out lineage-specific enhancers and open chromatin. We reveal that lineage-specific loops can activate gene expression and facilitate cell commitment through combining enhancers and accessible chromatin in a lineage-specific manner. We finally proposed loop-mediated regulatory networks and identified the controlling factors for adipocytes and osteoblasts determination. Functional experiments validated the lineage-specific regulation networks towards IRS2 and RUNX2 that are associated with adipogenesis and osteogenesis, respectively. These results are expected to help better understand the chromatin conformation determinants of hMSCs fate commitment.
    DOI:  https://doi.org/10.1038/s41418-022-01035-7