bims-crepig Biomed News
on Chromatin regulation and epigenetics in cell fate and cancer
Issue of 2024–06–30
seventeen papers selected by
Connor Rogerson, University of Cambridge



  1. Sci Adv. 2024 Jun 28. 10(26): eadn4149
      Histone H3 lysine-9 methylation (H3K9me) is a hallmark of the condensed and transcriptionally silent heterochromatin. It remains unclear how H3K9me controls transcription silencing and how cells delimit H3K9me domains to avoid silencing essential genes. Here, using Arabidopsis genetic systems that induce H3K9me2 in genes and transposons de novo, we show that H3K9me2 accumulation paradoxically also causes the deposition of the euchromatic mark H3K36me3 by a SET domain methyltransferase, ASHH3. ASHH3-induced H3K36me3 confers anti-silencing by preventing the demethylation of H3K4me1 by LDL2, which mediates transcriptional silencing downstream of H3K9me2. These results demonstrate that H3K9me2 not only facilitates but orchestrates silencing by actuating antagonistic silencing and anti-silencing pathways, providing insights into the molecular basis underlying proper partitioning of chromatin domains and the creation of metastable epigenetic variation.
    DOI:  https://doi.org/10.1126/sciadv.adn4149
  2. Nat Commun. 2024 Jun 25. 15(1): 5393
      Although our understanding of the involvement of heterochromatin architectural factors in shaping nuclear organization is improving, there is still ongoing debate regarding the role of active genes in this process. In this study, we utilize publicly-available Micro-C data from mouse embryonic stem cells to investigate the relationship between gene transcription and 3D gene folding. Our analysis uncovers a nonmonotonic - globally positive - correlation between intragenic contact density and Pol II occupancy, independent of cohesin-based loop extrusion. Through the development of a biophysical model integrating the role of transcription dynamics within a polymer model of chromosome organization, we demonstrate that Pol II-mediated attractive interactions with limited valency between transcribed regions yield quantitative predictions consistent with chromosome-conformation-capture and live-imaging experiments. Our work provides compelling evidence that transcriptional activity shapes the 4D genome through Pol II-mediated micro-compartmentalization.
    DOI:  https://doi.org/10.1038/s41467-024-49727-7
  3. Bioinformatics. 2024 Jun 28. 40(Supplement_1): i567-i575
       MOTIVATION: Profiling of gene expression and chromatin accessibility by single-cell multi-omics approaches can help to systematically decipher how transcription factors (TFs) regulate target gene expression via cis-region interactions. However, integrating information from different modalities to discover regulatory associations is challenging, in part because motif scanning approaches miss many likely TF binding sites.
    RESULTS: We develop REUNION, a framework for predicting genome-wide TF binding and cis-region-TF-gene "triplet" regulatory associations using single-cell multi-omics data. The first component of REUNION, Unify, utilizes information theory-inspired complementary score functions that incorporate TF expression, chromatin accessibility, and target gene expression to identify regulatory associations. The second component, Rediscover, takes Unify estimates as input for pseudo semi-supervised learning to predict TF binding in accessible genomic regions that may or may not include detected TF motifs. Rediscover leverages latent chromatin accessibility and sequence feature spaces of the genomic regions, without requiring chromatin immunoprecipitation data for model training. Applied to peripheral blood mononuclear cell data, REUNION outperforms alternative methods in TF binding prediction on average performance. In particular, it recovers missing region-TF associations from regions lacking detected motifs, which circumvents the reliance on motif scanning and facilitates discovery of novel associations involving potential co-binding transcriptional regulators. Newly identified region-TF associations, even in regions lacking a detected motif, improve the prediction of target gene expression in regulatory triplets, and are thus likely to genuinely participate in the regulation.
    AVAILABILITY AND IMPLEMENTATION: All source code is available at https://github.com/yangymargaret/REUNION.
    DOI:  https://doi.org/10.1093/bioinformatics/btae234
  4. Nucleic Acids Res. 2024 Jun 22. pii: gkae521. [Epub ahead of print]
      Intrinsically disordered regions (IDRs) guide transcription factors (TFs) to their genomic binding sites, raising the question of how structure-lacking regions encode for complex binding patterns. We investigated this using the TF Gln3, revealing sets of IDR-embedded determinants that direct Gln3 binding to respective groups of functionally related promoters, and enable tuning binding preferences between environmental conditions, phospho-mimicking mutations, and orthologs. Through targeted mutations, we defined the role of short linear motifs (SLiMs) and co-binding TFs (Hap2) in stabilizing Gln3 at respiration-chain promoters, while providing evidence that Gln3 binding at nitrogen-associated promoters is encoded by the IDR amino-acid composition, independent of SLiMs or co-binding TFs. Therefore, despite their apparent simplicity, TF IDRs can direct and regulate complex genomic binding patterns through a combination of SLiM-mediated and composition-encoded interactions.
    DOI:  https://doi.org/10.1093/nar/gkae521
  5. Epigenomes. 2024 May 27. pii: 21. [Epub ahead of print]8(2):
      Variant H3.3, along with H2A.Z, is notably enriched at promoter regions and is commonly associated with transcriptional activation. However, the specific molecular mechanisms through which H3.3 influences chromatin dynamics at transcription start sites, and its role in gene regulation, remain elusive. Using a combination of biochemistry and cryo-electron microscopy (cryo-EM), we show that the inclusion of H3.3 alone does not induce discernible changes in nucleosome DNA dynamics. Conversely, the presence of both H3.3 and H2A.Z enhances DNA's flexibility similarly to H2A.Z alone. Interestingly, our findings suggest that the presence of H3.3 in the H2A.Z nucleosome provides slightly increased protection to DNA at internal sites within the nucleosome. These results imply that while H2A.Z at active promoters promotes the formation of more accessible nucleosomes with increased DNA accessibility to facilitate transcription, the simultaneous presence of H3.3 offers an additional mechanism to fine-tune nucleosome accessibility and the chromatin environment.
    Keywords:  H2A.Z; H3.3; chromatin; histone variant; nucleosome
    DOI:  https://doi.org/10.3390/epigenomes8020021
  6. Nat Commun. 2024 Jun 26. 15(1): 5410
      METTL3 is the catalytic subunit of the methyltransferase complex, which mediates m6A modification to regulate gene expression. In addition, METTL3 regulates transcription in an enzymatic activity-independent manner by driving changes in high-order chromatin structure. However, how these functions of the methyltransferase complex are coordinated remains unknown. Here we show that the methyltransferase complex coordinates its enzymatic activity-dependent and independent functions to regulate cellular senescence, a state of stable cell growth arrest. Specifically, METTL3-mediated chromatin loops induce Hexokinase 2 expression through the three-dimensional chromatin organization during senescence. Elevated Hexokinase 2 expression subsequently promotes liquid-liquid phase separation, manifesting as stress granule phase separation, by driving metabolic reprogramming. This correlates with an impairment of translation of cell-cycle related mRNAs harboring polymethylated m6A sites. In summary, our results report a coordination of m6A-dependent and -independent function of the methyltransferase complex in regulating senescence through phase separation driven by metabolic reprogramming.
    DOI:  https://doi.org/10.1038/s41467-024-49745-5
  7. Mol Cell. 2024 Jun 20. pii: S1097-2765(24)00478-7. [Epub ahead of print]
      The evolutionarily conserved HIRA/Hir histone chaperone complex and ASF1a/Asf1 co-chaperone cooperate to deposit histone (H3/H4)2 tetramers on DNA for replication-independent chromatin assembly. The molecular architecture of the HIRA/Hir complex and its mode of histone deposition have remained unknown. Here, we report the cryo-EM structure of the S. cerevisiae Hir complex with Asf1/H3/H4 at 2.9-6.8 Å resolution. We find that the Hir complex forms an arc-shaped dimer with a Hir1/Hir2/Hir3/Hpc2 stoichiometry of 2/4/2/4. The core of the complex containing two Hir1/Hir2/Hir2 trimers and N-terminal segments of Hir3 forms a central cavity containing two copies of Hpc2, with one engaged by Asf1/H3/H4, in a suitable position to accommodate a histone (H3/H4)2 tetramer, while the C-terminal segments of Hir3 harbor nucleic acid binding activity to wrap DNA around the Hpc2-assisted histone tetramer. The structure suggests a model for how the Hir/Asf1 complex promotes the formation of histone tetramers for their subsequent deposition onto DNA.
    Keywords:  Asf1; H3/H4; HIRA; Hir; chromatin; crosslinking mass spectrometry; cryo-electron microscopy; histone chaperone; nucleosome; transcription
    DOI:  https://doi.org/10.1016/j.molcel.2024.05.031
  8. Sci Adv. 2024 Jun 28. 10(26): eadf3411
      Gene regulation is essential to placental function and fetal development. We built a genome-scale transcriptional regulatory network (TRN) of the human placenta using digital genomic footprinting and transcriptomic data. We integrated 475 transcriptomes and 12 DNase hypersensitivity datasets from placental samples to globally and quantitatively map transcription factor (TF)-target gene interactions. In an independent dataset, the TRN model predicted target gene expression with an out-of-sample R2 greater than 0.25 for 73% of target genes. We performed siRNA knockdowns of four TFs and achieved concordance between the predicted gene targets in our TRN and differences in expression of knockdowns with an accuracy of >0.7 for three of the four TFs. Our final model contained 113,158 interactions across 391 TFs and 7712 target genes and is publicly available. We identified 29 TFs which were significantly enriched as regulators for genes previously associated with preterm birth, and eight of these TFs were decreased in preterm placentas.
    DOI:  https://doi.org/10.1126/sciadv.adf3411
  9. Cell. 2024 Jun 20. pii: S0092-8674(24)00595-6. [Epub ahead of print]
      Mammalian blastocyst formation involves the specification of the trophectoderm followed by the differentiation of the inner cell mass into embryonic epiblast and extra-embryonic primitive endoderm (PrE). During this time, the embryo maintains a window of plasticity and can redirect its cellular fate when challenged experimentally. In this context, we found that the PrE alone was sufficient to regenerate a complete blastocyst and continue post-implantation development. We identify an in vitro population similar to the early PrE in vivo that exhibits the same embryonic and extra-embryonic potency and can form complete stem cell-based embryo models, termed blastoids. Commitment in the PrE is suppressed by JAK/STAT signaling, collaborating with OCT4 and the sustained expression of a subset of pluripotency-related transcription factors that safeguard an enhancer landscape permissive for multi-lineage differentiation. Our observations support the notion that transcription factor persistence underlies plasticity in regulative development and highlight the importance of the PrE in perturbed development.
    Keywords:  JAK/STAT; Oct4/Pou5f1; enhancer; hypoblast; plasticity; pluripotency; preimplantation development; primitive endoderm; totipotency; transcription
    DOI:  https://doi.org/10.1016/j.cell.2024.05.051
  10. Nucleic Acids Res. 2024 Jun 27. pii: gkae547. [Epub ahead of print]
      Androgen receptor- (AR-) indifference is a mechanism of resistance to hormonal therapy in prostate cancer (PC). Here we demonstrate that ONECUT2 (OC2) activates resistance through multiple drivers associated with adenocarcinoma, stem-like and neuroendocrine (NE) variants. Direct OC2 gene targets include the glucocorticoid receptor (GR; NR3C1) and the NE splicing factor SRRM4, which are key drivers of lineage plasticity. Thus, OC2, despite its previously described NEPC driver function, can indirectly activate a portion of the AR cistrome through epigenetic activation of GR. Mechanisms by which OC2 regulates gene expression include promoter binding, enhancement of genome-wide chromatin accessibility, and super-enhancer reprogramming. Pharmacologic inhibition of OC2 suppresses lineage plasticity reprogramming induced by the AR signaling inhibitor enzalutamide. These results demonstrate that OC2 activation promotes a range of drug resistance mechanisms associated with treatment-emergent lineage variation in PC and support enhanced efforts to therapeutically target OC2 as a means of suppressing treatment-resistant disease.
    DOI:  https://doi.org/10.1093/nar/gkae547
  11. STAR Protoc. 2024 Jun 22. pii: S2666-1667(24)00313-7. [Epub ahead of print]5(3): 103148
      Ectopic expression of lineage-specific transcription factors (TFs) of another cell type can induce cell fate reprogramming. However, the heterogeneity of reprogramming cells has been a challenge for data interpretation and model evaluation. Here, we present a protocol to characterize cells expressing defined factors during direct cell reprogramming using a factor-indexing approach based on single-nuclei multiome sequencing (FI-snMultiome-seq). We describe the steps for barcoding TFs, converting human fibroblasts to pancreatic ductal-like cells using defined TFs, and preparing library for FI-snMultiome-seq analysis. For complete details on the use and execution of this protocol, please refer to Fei et al.1.
    Keywords:  Genomics; Molecular Biology; Sequencing
    DOI:  https://doi.org/10.1016/j.xpro.2024.103148
  12. Nat Neurosci. 2024 Jun 24.
      Cell fate progression of pluripotent progenitors is strictly regulated, resulting in high human cell diversity. Epigenetic modifications also orchestrate cell fate restriction. Unveiling the epigenetic mechanisms underlying human cell diversity has been difficult. In this study, we use human brain and retina organoid models and present single-cell profiling of H3K27ac, H3K27me3 and H3K4me3 histone modifications from progenitor to differentiated neural fates to reconstruct the epigenomic trajectories regulating cell identity acquisition. We capture transitions from pluripotency through neuroepithelium to retinal and brain region and cell type specification. Switching of repressive and activating epigenetic modifications can precede and predict cell fate decisions at each stage, providing a temporal census of gene regulatory elements and transcription factors. Removing H3K27me3 at the neuroectoderm stage disrupts fate restriction, resulting in aberrant cell identity acquisition. Our single-cell epigenome-wide map of human neural organoid development serves as a blueprint to explore human cell fate determination.
    DOI:  https://doi.org/10.1038/s41593-024-01652-0
  13. Development. 2024 Jun 24. pii: dev.202502. [Epub ahead of print]
      The excitatory neurons of the three cerebellar nuclei (eCN) form the primary output for the cerebellum. The medial eCN (eCNm) were recently divided into molecularly defined subdomains in the adult, however how they are established during development is not known. We define molecular subdomains of the embryonic eCNm using scRNA-seq and spatial expression analysis, showing they evolve during embryogenesis to prefigure the adult. Furthermore, the medial eCN are transcriptionally divergent from the other nuclei by E14.5. We previously showed that loss of the homeobox genes En1 and En2 leads to loss of approximately half of embryonic eCNm. We demonstrate that mutation of En1/2 in embryonic eCNm results in death of specific posterior eCNm molecular subdomains and down regulation of TBR2 (EOMES) in an anterior embryonic subdomain, as well as reduced synaptic gene expression. We further reveal a similar function for EN1/2 in mediating TBR2 expression, neuron differentiation and survival in the other excitatory neurons (granule and unipolar brush cells). Thus, our work defines embryonic eCNm molecular diversity and reveals conserved roles for EN1/2 in the cerebellar excitatory neuron lineage.
    Keywords:   En1 ; En2 ; Tbr1 ; Eomes; Granule cell precursors; Unipolar brush cells
    DOI:  https://doi.org/10.1242/dev.202502
  14. EMBO Rep. 2024 Jun 27.
      The EMT-transcription factor ZEB1 is heterogeneously expressed in tumor cells and in cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC). While ZEB1 in tumor cells regulates metastasis and therapy resistance, its role in CAFs is largely unknown. Combining fibroblast-specific Zeb1 deletion with immunocompetent mouse models of CRC, we observe that inflammation-driven tumorigenesis is accelerated, whereas invasion and metastasis in sporadic cancers are reduced. Single-cell transcriptomics, histological characterization, and in vitro modeling reveal a crucial role of ZEB1 in CAF polarization, promoting myofibroblastic features by restricting inflammatory activation. Zeb1 deficiency impairs collagen deposition and CAF barrier function but increases NFκB-mediated cytokine production, jointly promoting lymphocyte recruitment and immune checkpoint activation. Strikingly, the Zeb1-deficient CAF repertoire sensitizes to immune checkpoint inhibition, offering a therapeutic opportunity of targeting ZEB1 in CAFs and its usage as a prognostic biomarker. Collectively, we demonstrate that ZEB1-dependent plasticity of CAFs suppresses anti-tumor immunity and promotes metastasis.
    Keywords:  Cancer-Associated Fibroblast Plasticity; Colorectal Cancer; Immune Checkpoint Blockade; Tumor Microenvironment
    DOI:  https://doi.org/10.1038/s44319-024-00186-7
  15. Nature. 2024 Jun 26.
      Tissue repair, immune defence and cancer progression rely on a vital cellular decision between quiescence and proliferation1,2. Mammalian cells proliferate by triggering a positive feedback mechanism3,4. The transcription factor E2F activates cyclin-dependent kinase 2 (CDK2), which in turn phosphorylates and inactivates the E2F inhibitor protein retinoblastoma (Rb). This action further increases E2F activity to express genes needed for proliferation. Given that positive feedback can inadvertently amplify small signals, understanding how cells keep this positive feedback in check remains a puzzle. Here we measured E2F and CDK2 signal changes in single cells and found that the positive feedback mechanism engages only late in G1 phase. Cells spend variable and often extended times in a reversible state of intermediate E2F activity before committing to proliferate. This intermediate E2F activity is proportional to the amount of phosphorylation of a conserved T373 residue in Rb that is mediated by CDK2 or CDK4/CDK6. Such T373-phosphorylated Rb remains bound on chromatin but dissociates from it once Rb is hyperphosphorylated at many sites, which fully activates E2F. The preferential initial phosphorylation of T373 can be explained by its relatively slower rate of dephosphorylation. Together, our study identifies a primed state of intermediate E2F activation whereby cells sense external and internal signals and decide whether to reverse and exit to quiescence or trigger the positive feedback mechanism that initiates cell proliferation.
    DOI:  https://doi.org/10.1038/s41586-024-07554-2
  16. Development. 2024 Jun 28. pii: dev.202693. [Epub ahead of print]
      SoxB1 transcription factors (Sox2/3) are well known for their role in early neural fate specification in the embryo, but little is known about functional roles for SoxB1 factors in non-neural ectodermal cell types, such as the neural plate border (NPB). Using Xenopus laevis, we set out to determine if SoxB1 transcription factors have a regulatory function in NPB formation. Herein, we show that SoxB1 factors are necessary for NPB formation, and that prolonged SoxB1 factor activity blocks the transition from a NPB to a neural crest state. Using ChIP-seq we demonstrate that Sox3 is enriched upstream of NPB genes in early NPB cells and in blastula stem cells. Depletion of SoxB1 factors in blastula stem cells results in downregulation of NPB genes. Finally, we identify Pou5f3 factors as potential Sox3 partners in regulating the formation of the NPB and show their combined activity is needed for normal NPB gene expression. Together, these data identify a novel role for SoxB1 factors in the establishment and maintenance of the NPB, in part through partnership with Pou5f3 factors.
    Keywords:  Neural crest; Neural plate border; Pou5f; SoxB1; Xenopus
    DOI:  https://doi.org/10.1242/dev.202693
  17. Nat Commun. 2024 Jun 22. 15(1): 4288
      HNF4A and HNF1A encode transcription factors that are important for the development and function of the pancreas and liver. Mutations in both genes have been directly linked to Maturity Onset Diabetes of the Young (MODY) and type 2 diabetes (T2D) risk. To better define the pleiotropic gene regulatory roles of HNF4A and HNF1A, we generated a comprehensive genome-wide map of their binding targets in pancreatic and hepatic cells using ChIP-Seq. HNF4A was found to bind and regulate known (ACY3, HAAO, HNF1A, MAP3K11) and previously unidentified (ABCD3, CDKN2AIP, USH1C, VIL1) loci in a tissue-dependent manner. Functional follow-up highlighted a potential role for HAAO and USH1C as regulators of beta cell function. Unlike the loss-of-function HNF4A/MODY1 variant I271fs, the T2D-associated HNF4A variant (rs1800961) was found to activate AKAP1, GAD2 and HOPX gene expression, potentially due to changes in DNA-binding affinity. We also found HNF1A to bind to and regulate GPR39 expression in beta cells. Overall, our studies provide a rich resource for uncovering downstream molecular targets of HNF4A and HNF1A that may contribute to beta cell or hepatic cell (dys)function, and set up a framework for gene discovery and functional validation.
    DOI:  https://doi.org/10.1038/s41467-024-48647-w