bims-cytox1 Biomed News
on Cytochrome oxidase subunit 1
Issue of 2022‒06‒12
three papers selected by
Gavin McStay
Staffordshire University


  1. Front Cell Dev Biol. 2022 ;10 892069
      The redox activity of cytochrome c oxidase (COX), the terminal oxidase of the mitochondrial respiratory chain (MRC), depends on the incorporation of iron and copper into its catalytic centers. Many mitochondrial proteins have specific roles for the synthesis and delivery of metal-containing cofactors during COX biogenesis. In addition, a large set of different factors possess other molecular functions as chaperones or translocators that are also necessary for the correct maturation of these complexes. Pathological variants in genes encoding structural MRC subunits and these different assembly factors produce respiratory chain deficiency and lead to mitochondrial disease. COX deficiency in Drosophila melanogaster, induced by downregulated expression of three different assembly factors and one structural subunit, resulted in decreased copper content in the mitochondria accompanied by different degrees of increase in the cytosol. The disturbances in metal homeostasis were not limited only to copper, as some changes in the levels of cytosolic and/or mitochondrial iron, manganase and, especially, zinc were observed in several of the COX-deficient groups. The altered copper and zinc handling in the COX defective models resulted in a transcriptional response decreasing the expression of copper transporters and increasing the expression of metallothioneins. We conclude that COX deficiency is generally responsible for an altered mitochondrial and cellular homeostasis of transition metals, with variations depending on the origin of COX assembly defect.
    Keywords:  copper; cytochrome c oxidase; iron; manganese; metal homeostasis; mitochondrial respiratory chain; zinc
    DOI:  https://doi.org/10.3389/fcell.2022.892069
  2. Genetics. 2022 Jun 06. pii: iyac090. [Epub ahead of print]
      Cytochrome c oxidase (CcO) is a multimeric copper-containing enzyme of the mitochondrial respiratory chain that powers cellular energy production. The two core subunits of CcO, Cox1 and Cox2, harbor the catalytic CuB and CuA sites, respectively. Biogenesis of each copper site occurs separately and requires multiple proteins that constitute the mitochondrial copper delivery pathway. Currently, the identity of all the members of the pathway is not known, though several evolutionarily conserved twin CX9C motif-containing proteins have been implicated in this process. Here, we performed a targeted yeast suppressor screen that placed Coa4, a twin CX9C motif-containing protein, in the copper delivery pathway to the Cox1 subunit. Specifically, we show that overexpression of Cox11, a copper metallochaperone required for the formation of CuB site, can restore Cox1 abundance, CcO assembly, and mitochondrial respiration in coa4Δ cells. This rescue is dependent on the copper-coordinating cysteines of Cox11. The abundance of Coa4 and Cox11 in mitochondria is reciprocally regulated, further linking Coa4 to the CuB site biogenesis. Additionally, we find that coa4Δ cells have reduced levels of copper and exogenous copper supplementation can partially ameliorate its respiratory-deficient phenotype, a finding that connects Coa4 to cellular copper homeostasis. Finally, we demonstrate that human COA4 can replace the function of yeast Coa4 indicating its evolutionarily conserved role. Our work provides genetic evidences for the role of Coa4 in the copper delivery pathway to the CuB site of CcO.
    Keywords:  Coa4; Cox1; Cox11; copper; cytochrome c oxidase; mitochondria
    DOI:  https://doi.org/10.1093/genetics/iyac090
  3. Malar J. 2022 Jun 07. 21(1): 173
      BACKGROUND: Copper is an essential metal for living organisms as a catalytic co-factor for important enzymes, like cytochrome c oxidase the final enzyme in the electron transport chain. Plasmodium falciparum parasites in infected red blood cells are killed by excess copper and development in erythrocytes is inhibited by copper chelators. Cytochrome c oxidase in yeast obtains copper for the CuB site in the Cox1 subunit from Cox11.METHODS: A 162 amino acid carboxy-terminal domain of the P. falciparum Cox11 ortholog (PfCox11Ct) was recombinantly expressed and the rMBPPfCox11Ct affinity purified. Copper binding was measured in vitro and in Escherichia coli host cells. Site directed mutagenesis was used to identify key copper binding cysteines. Antibodies confirmed the expression of the native protein.
    RESULTS: rMBPPfCox11Ct was expressed as a 62 kDa protein fused with the maltose binding protein and affinity purified. rMBPPfCox11Ct bound copper measured by: a bicinchoninic acid release assay; atomic absorption spectroscopy; a bacterial host growth inhibition assay; ascorbate oxidation inhibition and in a thermal shift assay. The cysteine 157 amino acid was shown to be important for in vitro copper binding by PfCox11whilst Cys 60 was not. The native protein was detected by antibodies against rMBPPfCox11Ct.
    CONCLUSIONS: Plasmodium spp. express the PfCox11 protein which shares structural features and copper binding motifs with Cox11 from other species. PfCox11 binds copper and is, therefore, predicted to transfer copper to the CuB site of Plasmodium cytochrome c oxidase. Characterization of Plasmodium spp. proteins involved in copper metabolism will help sceintists understand the role of cytochrome c oxidase and this essential metal in Plasmodium homeostasis.
    Keywords:  Copper; Cox11; Cytochrome c oxidase; Malaria; Plasmodium
    DOI:  https://doi.org/10.1186/s12936-022-04188-5