bims-cytox1 Biomed News
on Cytochrome oxidase subunit 1
Issue of 2024–05–12
two papers selected by
Gavin McStay, Liverpool John Moores University



  1. Biochim Biophys Acta Bioenerg. 2024 May 07. pii: S0005-2728(24)00018-5. [Epub ahead of print]1865(3): 149048
      The effect of mitochondrial membrane potential (ΔΨm) on the absorbance of the reduced cytochrome c oxidase (COX) was evaluated in isolated rabbit heart mitochondria using integrating sphere optical spectroscopy. Maximal reduction of the mitochondrial cytochromes was achieved by either blowing nitrogen to remove oxygen, or by adding cyanide. Gradual depolarization of ΔΨm by adding increasing concentrations of uncoupler resulted in an increase of up to 50 % in the absorbance of cytochrome aa3 under nitrogen saturation, and of 25 % with cyanide. Cytochrome aa3 absorbance increases were also observed in the presence of cyanide with apyrase (20 %) or oligomycin (12 %). The bL heme absorbance also decreased as expected from ΔΨm depolarization. A ~ 1 nm red shift in the peak wavelength of cytochrome aa3 was observed under anoxic conditions as ΔΨm was depolarized. Importantly, cytochrome c and c1 absorbances remained constant at levels corresponding to full reduction under all experimental manipulations of ΔΨm, especially with cyanide. These data suggest that ΔΨm-dependent changes in the absorbance of reduced COX were due to a variable extinction coefficient of heme a and/or a3 as a function of ΔΨm. A similar increase in the reduced cytochrome aa3 absorbance without changes in cytochrome c and c1 was observed in the perfused rabbit heart when decreasing ΔΨm with uncoupler. Our results imply that COX absorbance in its fully reduced state does not simply reflect the oxygen tension but also the ΔΨm. This may prove useful in monitoring ΔΨm under anoxic or ischemic conditions in intact tissue.
    Keywords:  Cytochrome c oxidase; Heart; Membrane potential; Mitochondria; Respiration; Spectroscopy; electron transfer
    DOI:  https://doi.org/10.1016/j.bbabio.2024.149048
  2. Front Genet. 2024 ;15 1375467
      Leigh syndrome French Canadian type (LSFC) is a recessive neurodegenerative disease characterized by tissue-specific deficiency in cytochrome c oxidase (COX), the fourth complex in the oxidative phosphorylation system. LSFC is caused by mutations in the leucine rich pentatricopeptide repeat containing gene (LRPPRC). Most LSFC patients in Quebec are homozygous for an A354V substitution that causes a decrease in the expression of the LRPPRC protein. While LRPPRC is ubiquitously expressed and is involved in multiple cellular functions, tissue-specific expression of LRPPRC and COX activity is correlated with clinical features. In this proof-of-principle study, we developed human induced pluripotent stem cell (hiPSC)-based models from fibroblasts taken from a patient with LSFC, homozygous for the LRPPRC*354V allele, and from a control, homozygous for the LRPPRC*A354 allele. Specifically, for both of these fibroblast lines we generated hiPSC, hiPSC-derived cardiomyocytes (hiPSC-CMs) and hepatocyte-like cell (hiPSC-HLCs) lines, as well as the three germ layers. We observed that LRPPRC protein expression is reduced in all cell lines/layers derived from LSFC patient compared to control cells, with a reduction ranging from ∼70% in hiPSC-CMs to undetectable levels in hiPSC-HLC, reflecting tissue heterogeneity observed in patient tissues. We next performed exploratory analyses of these cell lines and observed that COX protein expression was reduced in all cell lines derived from LSFC patient compared to control cells. We also observed that mutant LRPPRC was associated with altered expression of key markers of endoplasmic reticulum stress response in hiPSC-HLCs but not in other cell types that were tested. While this demonstrates feasibility of the approach to experimentally study genotype-based differences that have tissue-specific impacts, this study will need to be extended to a larger number of patients and controls to not only validate the current observations but also to delve more deeply in the pathogenic mechanisms of LSFC.
    Keywords:  Leigh syndrome French Canadian type; cardiomyocyte cells; disease modeling; hepatocyte-like cells; induced pluripotent stem cells; three germ layers
    DOI:  https://doi.org/10.3389/fgene.2024.1375467