bims-cytox1 Biomed News
on Cytochrome oxidase subunit 1
Issue of 2024–05–19
three papers selected by
Gavin McStay, Liverpool John Moores University



  1. ACS Chem Biol. 2024 May 13.
      Ophiobolin A (OPA) is a sesterterpenoid fungal natural product with broad anticancer activity. While OPA possesses multiple electrophilic moieties that can covalently react with nucleophilic amino acids on proteins, the proteome-wide targets and mechanism of OPA remain poorly understood in many contexts. In this study, we used covalent chemoproteomic platforms to map the proteome-wide reactivity of the OPA in a highly sensitive lung cancer cell line. Among several proteins that OPA engaged, we focused on two targets: lysine-72 of cytochrome c oxidase subunit 5A (COX5A) and cysteine-53 of mitochondrial hypoxia induced gene 1 domain family member 2A (HIGD2A). These two subunit proteins are part of complex IV (cytochrome C oxidase) within the electron transport chain and contributed significantly to the antiproliferative activity of OPA. OPA activated mitochondrial respiration in a COX5A- and HIGD2A-dependent manner, leading to an initial spike in mitochondrial ATP and heightened mitochondrial oxidative stress. OPA compromised mitochondrial membrane potential, ultimately leading to ATP depletion. We have used chemoproteomic strategies to discover a unique anticancer mechanism of OPA through activation of complex IV leading to compromised mitochondrial energetics and rapid cell death.
    DOI:  https://doi.org/10.1021/acschembio.4c00064
  2. FEBS Lett. 2024 May 15.
      Cymoxanil (CYM) is a widely used synthetic acetamide fungicide, but its biochemical mode of action remains elusive. Since CYM inhibits cell growth, biomass production, and respiration in Saccharomyces cerevisiae, we used this model to characterize the effect of CYM on mitochondria. We found it inhibits oxygen consumption in both whole cells and isolated mitochondria, specifically inhibiting cytochrome c oxidase (CcO) activity during oxidative phosphorylation. Based on molecular docking, we propose that CYM blocks the interaction of cytochrome c with CcO, hampering electron transfer and inhibiting CcO catalytic activity. Although other targets cannot be excluded, our data offer valuable insights into the mode of action of CYM that will be instrumental in driving informed management of the use of this fungicide.
    Keywords:  cymoxanil; cytochrome c; cytochrome c oxidase; mode of action; respiration
    DOI:  https://doi.org/10.1002/1873-3468.14907
  3. Case Rep Genet. 2024 ;2024 6475425
      Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem disabling disease with unclear etiology and pathophysiology, whose typical symptoms include prolonged debilitating recovery from fatigue or postexertional malaise (PEM). Disrupted production of adenosine triphosphate (ATP), the intracellular energy that fuels cellular activity, is a cause for fatigue. Here, we present a long-term case of ME/CFS: a 75-year-old Caucasian female patient, whose symptoms of ME/CFS were clearly triggered by an acute infection of the Epstein-Barr virus 24 years ago (mononucleosis). Before then, the patient was a healthy professional woman. A recent DNA sequence analysis identified missense variants of mitochondrial respiratory chain enzymes, including ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V). Protein subunits ATP6 and Cox1 are encoded by mitochondrial DNA outside of the nucleus: the Cox1 gene encodes subunit 1 of complex IV (CIV: cytochrome c oxidase) and the ATP6 gene encodes subunit A of complex V (CV: ATP synthase). CIV and CV are the last two of five essential enzymes that perform the mitochondrial electron transport respiratory chain reaction to generate ATP. Further analysis of the blood sample using transmission electron microscopy demonstrated abnormal, circulating, extracellular mitochondria. These results indicate that the patient had dysfunctional mitochondria, which may contribute directly to her major symptoms, including PEM and neurological and cognitive changes. Furthermore, the identified variants of ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V), functioning at a later stage of mitochondrial ATP production, may play a role in the abnormality of the patient's mitochondria and the development of her ME/CFS symptoms.
    DOI:  https://doi.org/10.1155/2024/6475425