bims-cytox1 Biomed News
on Cytochrome oxidase subunit 1
Issue of 2024‒08‒11
one paper selected by
Gavin McStay, Liverpool John Moores University



  1. Biochem Biophys Res Commun. 2024 Aug 05. pii: S0006-291X(24)01037-4. [Epub ahead of print]736 150501
      Mitochondrial oxidative phosphorylation (OXPHOS) is an obligatory process in sarcoma. Despite that, the metabolic programming of sarcoma mitochondria is still unknown. To obtain a comprehensive metabolic insight of mitochondria, we developed a mouse fibrosarcoma model by injecting 3-methylcholanthrene and compared mitochondrial proteomes between sarcoma and its contralateral normal muscle using mass spectrometry. Our study identified ∼449 proteins listed in the SwissProt databases, and all the data sets are available via ProteomeXchange with the identifier PXD044903. In sarcoma, 49 mitochondrial proteins were found differentially expressed, including 36 proteins up-regulated and 13 proteins down-regulated, with the significance of p-value <0.05 and the log2[fold change] > 1 and < -1 as compared to normal muscle. Our data revealed that various anaplerotic reactions actively replenish the TCA cycle in sarcoma. The comparative expression profile and Western blotting analysis of OXPHOS subunits showed that complex-IV subunits, MT-CO3 and COX6A1, were significantly up-regulated in sarcoma vs. normal muscle. Further, biochemical and physiological assays confirmed enhanced complex-IV specific enzymatic and supercomplex activities with a concomitant increase of oxygen consumption rate in sarcoma mitochondria compared to normal muscle. Validation with human post-operative sarcoma tissues also confirms an increased MT-CO3 expression compared to normal tissue counterparts. Thus, our data comprehensively analyses the mitochondrial proteome and identifies augmented complex-IV assembly and activity in sarcoma.
    Keywords:  Differential proteomics; Mitochondrial complex-IV; OXPHOS; Sarcoma
    DOI:  https://doi.org/10.1016/j.bbrc.2024.150501