ACS Appl Mater Interfaces. 2024 Jun 17.
Anisotropic hydrogels have found widespread applications in biomedical engineering, particularly as scaffolds for tissue engineering. However, it remains a challenge to produce them using conventional fabrication methods, without specialized synthesis or equipment, such as 3D printing and unidirectional stretching. In this study, we explore the self-assembly behaviors of polyethylene glycol diacrylate (PEGDA), using disodium cromoglycate (DSCG), a lyotropic chromonic liquid crystal, as a removable template. The affinity between short-chain PEGDA (Mn = 250) and DSCG allows polymerization to take place at the DSCG surface, thereby forming anisotropic hydrogel networks with fibrin-like morphologies. This process requires considerable finesse as the phase behaviors of DSCG depend on a multitude of factors, including the weight percentage of PEGDA and DSCG, the chain length of PEGDA, and the concentration of ionic species. The key to modulating the microstructures of the all-PEG hydrogel networks is through precise control of the DSCG concentration, resulting in anisotropic mechanical properties. Using these anisotropic hydrogel networks, we demonstrate that human dermal fibroblasts are particularly sensitive to the alignment order. We find that cells exhibit a density-dependent activation pattern of a Yes-associated protein, a mechanotransducer, corroborating its role in enabling cells to translate external mechanical and morphological patterns to specific behaviors. The flexibility of modulating microstructure, along with PEG hydrogels' biocompatibility and biodegradability, underscores their potential use for tissue engineering to create functional structures with physiological morphologies.
Keywords: PEG hydrogels; anisotropic hydrogels; cell alignment; lyotropic chromonic liquid crystal; phase diagram