bims-ecemfi Biomed News
on ECM and fibroblasts
Issue of 2024‒08‒04
23 papers selected by
Badri Narayanan Narasimhan, University of California, San Diego



  1. APL Bioeng. 2024 Sep;8(3): 036106
      Extracellular biophysical cues such as matrix stiffness are key stimuli tuning cell fate and affecting tumor progression in vivo. However, it remains unclear how cancer spheroids in a 3D microenvironment perceive matrix mechanical stiffness stimuli and translate them into intracellular signals driving progression. Mechanosensitive Piezo1 and TRPV4 ion channels, upregulated in many malignancies, are major transducers of such physical stimuli into biochemical responses. Most mechanotransduction studies probing the reception of changing stiffness cues by cells are, however, still limited to 2D culture systems or cell-extracellular matrix models, which lack the major cell-cell interactions prevalent in 3D cancer tumors. Here, we engineered a 3D spheroid culture environment with varying mechanobiological properties to study the effect of static matrix stiffness stimuli on mechanosensitive and malignant phenotypes in oral squamous cell carcinoma spheroids. We find that spheroid growth is enhanced when cultured in stiff extracellular matrix. We show that the protein expression of mechanoreceptor Piezo1 and stemness marker CD44 is upregulated in stiff matrix. We also report the upregulation of a selection of genes with associations to mechanoreception, ion channel transport, extracellular matrix organization, and tumorigenic phenotypes in stiff matrix spheroids. Together, our results indicate that cancer cells in 3D spheroids utilize mechanosensitive ion channels Piezo1 and TRPV4 as means to sense changes in static extracellular matrix stiffness, and that stiffness drives pro-tumorigenic phenotypes in oral squamous cell carcinoma.
    DOI:  https://doi.org/10.1063/5.0210134
  2. Sci Adv. 2024 Aug 02. 10(31): eadk8232
      While extracellular matrix (ECM) stress relaxation is increasingly appreciated to regulate stem cell fate commitment and other behaviors, much remains unknown about how cells process stress-relaxation cues in tissue-like three-dimensional (3D) geometries versus traditional 2D cell culture. Here, we develop an oligonucleotide-crosslinked hyaluronic acid-based ECM platform with tunable stress relaxation properties capable of use in either 2D or 3D. Strikingly, stress relaxation favors neural stem cell (NSC) neurogenesis in 3D but suppresses it in 2D. RNA sequencing and functional studies implicate the membrane-associated protein spectrin as a key 3D-specific transducer of stress-relaxation cues. Confining stress drives spectrin's recruitment to the F-actin cytoskeleton, where it mechanically reinforces the cortex and potentiates mechanotransductive signaling. Increased spectrin expression is also accompanied by increased expression of the transcription factor EGR1, which we previously showed mediates NSC stiffness-dependent lineage commitment in 3D. Our work highlights spectrin as an important molecular sensor and transducer of 3D stress-relaxation cues.
    DOI:  https://doi.org/10.1126/sciadv.adk8232
  3. Proc Natl Acad Sci U S A. 2024 Aug 06. 121(32): e2404146121
      Cell-matrix interactions in 3D environments significantly differ from those in 2D cultures. As such, mechanisms of mechanotransduction in 2D cultures are not necessarily applicable to cell-encapsulating hydrogels that resemble features of tissue architecture. Accordingly, the characterization of molecular pathways in 3D matrices is expected to uncover insights into how cells respond to their mechanical environment in physiological contexts, and potentially also inform hydrogel-based strategies in cell therapies. In this study, a bone marrow-mimetic hydrogel was employed to systematically investigate the stiffness-responsive transcriptome of mesenchymal stromal cells. High matrix rigidity impeded integrin-collagen adhesion, resulting in changes in cell morphology characterized by a contractile network of actin proximal to the cell membrane. This resulted in a suppression of extracellular matrix-regulatory genes involved in the remodeling of collagen fibrils, as well as the upregulation of secreted immunomodulatory factors. Moreover, an investigation of long noncoding RNAs revealed that the cytoskeleton regulator RNA (CYTOR) contributes to these 3D stiffness-driven changes in gene expression. Knockdown of CYTOR using antisense oligonucleotides enhanced the expression of numerous mechanoresponsive cytokines and chemokines to levels exceeding those achievable by modulating matrix stiffness alone. Taken together, our findings further our understanding of mechanisms of mechanotransduction that are distinct from canonical mechanotransductive pathways observed in 2D cultures.
    Keywords:  RNA-seq; biomaterials; lncRNA; mechanotransduction; mesenchymal stromal cells
    DOI:  https://doi.org/10.1073/pnas.2404146121
  4. Adv Sci (Weinh). 2024 Jul 31. e2309966
      Tumor extracellular matrices (ECM) exhibit aberrant changes in composition and mechanics compared to normal tissues. Proteoglycans (PG) are vital regulators of cellular signaling in the ECM with the ability to modulate receptor tyrosine kinase (RTK) activation via their sulfated glycosaminoglycan (sGAG) side chains. However, their role on tumor cell behavior is controversial. Here, it is demonstrated that PGs are heavily expressed in lung adenocarcinoma (LUAD) patients in correlation with invasive phenotype and poor prognosis. A bioengineered human lung tumor model that recapitulates the increase of sGAGs in tumors in an organotypic matrix with independent control of stiffness, viscoelasticity, ligand density, and porosity, is developed. This model reveals that increased sulfation stimulates extensive proliferation, epithelial-mesenchymal transition (EMT), and stemness in cancer cells. The focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K) signaling axis is identified as a mediator of sulfation-induced molecular changes in cells upon activation of a distinct set of RTKs within tumor-mimetic hydrogels. The study shows that the transcriptomic landscape of tumor cells in response to increased sulfation resembles native PG-rich patient tumors by employing integrative omics and network modeling approaches.
    Keywords:  cancer; extracellular matrix (ECM); hydrogels; tissue engineering; tumor microenvironment (TME); tumor models
    DOI:  https://doi.org/10.1002/advs.202309966
  5. Biomaterials. 2024 Jul 27. pii: S0142-9612(24)00249-7. [Epub ahead of print]312 122715
      Extracellular matrix (ECM) stiffness is a major driver of stem cell fate. However, the involvement of the three-dimensional (3D) genomic reorganization in response to ECM stiffness remains unclear. Here, we generated comprehensive 3D chromatin landscapes of mesenchymal stem cells (MSCs) exposed to various ECM stiffness. We found that there were more long-range chromatin interactions, but less compartment A in MSCs cultured on stiff ECM than those cultured on soft ECM. However, the switch from compartment B in MSCs cultured on soft ECM to compartment A in MSCs cultured on stiff ECM included genes encoding proteins primarily enriched in cytoskeleton organization. At the topologically associating domains (TADs) level, stiff ECM tends to have merged TADs on soft ECM. These merged TADs on stiff ECM include upregulated genes encoding proteins enriched in osteogenesis, such as SP1, ETS1, and DCHS1, which were validated by quantitative real-time polymerase chain reaction and found to be consistent with the increase of alkaline phosphatase staining. Knockdown of SP1 or ETS1 led to the downregulation of osteogenic marker genes, including COL1A1, RUNX2, ALP, and OCN in MSCs cultured on stiff ECM. Our study provides an important insight into the stiff ECM-mediated promotion of MSC differentiation towards osteogenesis, emphasizing the influence of mechanical cues on the reorganization of 3D genome architecture and stem cell fate.
    Keywords:  3D genome; Extracellular matrix; Mesenchymal stem cells; Osteogenesis
    DOI:  https://doi.org/10.1016/j.biomaterials.2024.122715
  6. Adv Healthc Mater. 2024 Jul 29. e2401550
      Alginate hydrogels are widely used as biomaterials for cell culture and tissue engineering due to their biocompatibility and tunable mechanical properties. Reducing alginate molecular weight is an effective strategy for modulating hydrogel viscoelasticity and stress relaxation behavior, which can significantly impact cell spreading and fate. However, current methods like gamma irradiation to produce low molecular weight alginates suffer from high cost and limited accessibility. Here, a facile and cost-effective approach to reduce alginate molecular weight in a highly controlled manner using serial autoclaving is presented. Increasing the number of autoclave cycles results in proportional reductions in intrinsic viscosity, hydrodynamic radius, and molecular weight of the polymer while maintaining its chemical composition. Hydrogels fabricated from mixtures of the autoclaved alginates exhibit tunable mechanical properties, with inclusion of lower molecular weight alginate leading to softer gels with faster stress relaxation behaviors. The method is demonstrated by establishing how viscoelastic relaxation affects the spreading of encapsulated fibroblasts and glioblastoma cells. Results establish repetitive autoclaving as an easily accessible technique to generate alginates with a range of molecular weights and to control the viscoelastic properties of alginate hydrogels, and demonstrate utility across applications in mechanobiology, tissue engineering, and regenerative medicine.
    Keywords:  alginate; cell mechanosensing; mechanical properties; stress‐relaxation; viscoelasticity
    DOI:  https://doi.org/10.1002/adhm.202401550
  7. bioRxiv. 2024 Jul 16. pii: 2024.07.12.603216. [Epub ahead of print]
      Cells possess the remarkable ability to generate tissue-specific 3D interconnected networks and respond to a wide range of stimuli. Understanding the link between the spatial arrangement of individual cells and their networks' emergent properties is necessary for the discovery of both fundamental biology as well as applied therapeutics. However, current methods spanning from lithography to 3D photo-patterning to acoustofluidic devices are unable to generate interconnected and organized single cell 3D networks within native extracellular matrix (ECM). To address this challenge, we report a novel technology coined as CELLNET. This involves the generation of crosslinked collagen within multi-chambered microfluidic devices followed by femtosecond laser ablation of 3D microchannel networks and cell seeding. Using model cells, we show that cell migrate within ablated networks within hours, self-organize and form viable, interconnected, 3D networks in custom architectures such as square grid, concentric circle, parallel lines, and spiral patterns. Heterotypic CELLNETs can also be generated by seeding multiple cell types in side-chambers of the devices. The functionality of cell networks can be studied by monitoring the real-time calcium signaling response of individual cells and signal propagation within CELLNETs when subjected to flow stimulus alone or a sequential combination of flow and biochemical stimuli. Furthermore, user-defined disrupted CELLNETs can be generated by lethally injuring target cells within the 3D network and analyzing the changes in their signaling dynamics. As compared to the current self-assembly based methods that exhibit high variability and poor reproducibility, CELLNETs can generate organized 3D single-cell networks and their real-time signaling responses to a range of stimuli can be accurately captured using simple cell seeding and easy-to-handle microfluidic devices. CELLNET, a new technology agnostic of cell types, ECM formulations, 3D cell-connectivity designs, or location and timing of network disruptions, could pave the way to address a range of fundamental and applied bioscience applications.Teaser: New technology to generate 3D single cell interconnected and disrupted networks within natural extracellular matrix in custom configurations.
    DOI:  https://doi.org/10.1101/2024.07.12.603216
  8. bioRxiv. 2024 Jul 17. pii: 2024.07.14.602133. [Epub ahead of print]
      Interactions between tumor and stromal cells are well known to play a prominent roles in progression of pancreatic ductal adenocarcinoma (PDAC). As knowledge of stromal crosstalk in PDAC has evolved, it has become clear that cancer associated fibroblasts can play both tumor promoting and tumor suppressive roles through a combination of paracrine crosstalk and juxtacrine interactions involving direct physical contact. Another major contributor to dismal survival statistics for PDAC is development of resistance to chemotherapy drugs. Though less is known about how the acquisition of chemoresistance impacts upon tumor-stromal crosstalk. Here, we use 3D co-culture geometries to recapitulate juxtacrine interactions between epithelial and stromal cells. In particular, extracellular matrix (ECM) overlay cultures in which stromal cells (pancreatic stellate cells, or normal human fibroblasts) are placed adjacent to PDAC cells (PANC1), result in direct heterotypic cell adhesions accompanied by dramatic fibroblast contractility which leads to highly condensed macroscopic multicellular aggregates as detected using particle image velocimetry (PIV) analysis to quantify cell velocities over the course of time lapse movie sequences. To investigate how drug resistance impacts these juxtacrine interactions we contrast cultures in which PANC1 are substituted with a drug resistant subline (PANC1-OR) previously established in our lab. We find that heterotypic cell-cell interactions are highly suppressed in drug-resistant cells relative to the parental PANC1 cells. To investigate further we conduct RNA-seq and bioinformatics analysis to identify differential gene expression in PANC1 and PANC1-OR, which shows that negative regulation of cell adhesion molecules, consistent with increased epithelial mesenchymal transition (EMT), is also consistent with loss of hetrotypic cell-cell contact necessary for the contractile behavior observed in drug naïve cultures. Overall these findings elucidate the role of drug-resistance in inhibiting an avenue of stromal crosstalk which is associated with tumor suppression and also help to establish cell culture conditions useful for further mechanistic investigation.
    DOI:  https://doi.org/10.1101/2024.07.14.602133
  9. J Invest Dermatol. 2024 Jul 29. pii: S0022-202X(24)01885-2. [Epub ahead of print]
      During the physiological healing of skin wounds, fibroblasts recruited from the uninjured adjacent dermis and deeper subcutaneous fascia layers are transiently activated into myofibroblasts to first secrete and then contract collagen-rich extracellular matrix into a mechanically resistant scar. Scar tissue restores skin integrity after damage but comes at the expense of poor esthetics and loss of tissue function. Stiff scar matrix also mechanically activates various precursor cells into myofibroblasts in a positive feedback loop. Persistent myofibroblast activation results in pathologic accumulation of fibrous collagen and hypertrophic scarring, called fibrosis. Consequently, the mechanisms of fibroblast-to-myofibroblast activation and persistence are studied to develop antifibrotic and prohealing treatments. Mechanistic understanding often starts in a plastic cell culture dish. This can be problematic because contact of fibroblasts with tissue culture plastic or glass surfaces invariably generates myofibroblast phenotypes in standard culture. We describe a straight-forward method to produce soft cell culture surfaces for fibroblast isolation and continued culture and highlight key advantages and limitations of the approach. Adding a layer of elastic silicone polymer tunable to the softness of normal skin and the stiffness of pathologic scars allows to control mechanical fibroblast activation while preserving the simplicity of conventional 2-dimensional cell culture.
    Keywords:  Cell culture; Elastic modulus; Hypertrophic scarring; Silicone substrate; α-Smooth muscle actin
    DOI:  https://doi.org/10.1016/j.jid.2024.05.033
  10. J Mech Behav Biomed Mater. 2024 Jul 25. pii: S1751-6161(24)00307-2. [Epub ahead of print]158 106675
      Tissue engineering (TE) of adipose tissue (AT) is a promising strategy that can provide 3D constructs to be used for in vitro modelling, overcoming the limitations of 2D cell cultures by closely replicating the complex breast tissue extracellular matrix (ECM), cell-cell, and cell-ECM interactions. However, the challenge in developing 3D constructs of AT resides in designing artificial matrices that can mimic the structural properties of native AT and support adipocytes biological functions. Herein, we developed photocrosslinkable hydrogels by employing gelatin methacrylate (GelMA) and hyaluronic acid methacrylate (HAMA) to mimic the collagenous and glycosaminoglycan components of AT microenvironment, respectively. The physico-mechanical properties of the hydrogels were tuned to target AT biomimetic properties by varying the hydrogel formulation (with or without hyaluronic acid), and the amount of photoinitiator (ruthenium/sodium persulfate) used to crosslink the hydrogels via visible light. The physical and mechanical properties of the developed hydrogels were tuned by varying the material formulation and the photoinitiator concentration. Preadipocytes were encapsulated inside the hydrogels and differentiated into mature adipocytes. Findings enlightened that HAMA addition in hybrid hydrogels boosted an increased lipid accumulation. The engineered biomimetic adipocyte-based constructs resulted promising as scaffolds or 3D in vitro models of AT.
    Keywords:  Adipose tissue engineering; Gelatin; Hyaluronic acid; Hydrogel; In vitro model; Lipid accumulation
    DOI:  https://doi.org/10.1016/j.jmbbm.2024.106675
  11. Comput Methods Programs Biomed. 2024 Jul 19. pii: S0169-2607(24)00324-9. [Epub ahead of print]255 108331
      BACKGROUND AND OBJECTIVE: Immune cell migration is one of the key features that enable immune cells to find invading pathogens, control tissue damage, and eliminate primary developing tumors. Chimeric antigen receptor (CAR) T-cell therapy is a novel strategy in the battle against various cancers. It has been successful in treating hematological tumors, yet it still faces many challenges in the case of solid tumors. In this work, we evaluate the three-dimensional (3D) migration capacity of T and CAR-T cells within dense collagen-based hydrogels. Quantifying three-dimensional (3D) cell migration requires microscopy techniques that may not be readily accessible. Thus, we introduce a straightforward mathematical model designed to infer 3D trajectories of cells from two-dimensional (2D) cell trajectories.METHODS: We develop a 3D agent-based model (ABM) that simulates the temporal changes in the direction of migration with an inverse transform sampling method. Then, we propose an optimization procedure to accurately orient cell migration over time to reproduce cell migration from 2D experimental cell trajectories. With this model, we simulate cell migration assays of T and CAR-T cells in microfluidic devices conducted under hydrogels with different concentrations of type I collagen and validate our 3D cell migration predictions with light-sheet microscopy.
    RESULTS: Our findings indicate that CAR-T cell migration is more sensitive to collagen concentration increases than T cells, resulting in a more pronounced reduction in their invasiveness. Moreover, our computational model reveals significant differences in 3D movement patterns between T and CAR-T cells. T cells exhibit migratory behavior in 3D whereas that CAR-T cells predominantly move within the XY plane, with limited movement in the Z direction. However, upon the introduction of a CXCL12 chemical gradient, CAR-T cells present migration patterns that closely resemble those of T cells.
    CONCLUSIONS: This framework demonstrates that 2D projections of 3D trajectories may not accurately represent real migration patterns. Moreover, it offers a tool to estimate 3D migration patterns from 2D experimental data, which can be easily obtained with automatic quantification algorithms. This approach helps reduce the need for sophisticated and expensive microscopy equipment required in laboratories, as well as the computational burden involved in producing and analyzing 3D experimental data.
    Keywords:  3D cell migration; Agent-based models; Immunotherapy; Microfluidics-based cell cultures
    DOI:  https://doi.org/10.1016/j.cmpb.2024.108331
  12. Front Bioeng Biotechnol. 2024 ;12 1404508
      Studies of cell and tissue mechanics have shown that significant changes in cell and tissue mechanics during lesions and cancers are observed, which provides new mechanical markers for disease diagnosis based on machine learning. However, due to the lack of effective mechanic markers, only elastic modulus and iconographic features are currently used as markers, which greatly limits the application of cell and tissue mechanics in disease diagnosis. Here, we develop a liver pathological state classifier through a support vector machine method, based on high dimensional viscoelastic mechanical data. Accurate diagnosis and grading of hepatic fibrosis facilitates early detection and treatment and may provide an assessment tool for drug development. To this end, we used the viscoelastic parameters obtained from the analysis of creep responses of liver tissues by a self-similar hierarchical model and built a liver state classifier based on machine learning. Using this classifier, we implemented a fast classification of healthy, diseased, and mesenchymal stem cells (MSCs)-treated fibrotic live tissues, and our results showed that the classification accuracy of healthy and diseased livers can reach 0.99, and the classification accuracy of the three liver tissues mixed also reached 0.82. Finally, we provide screening methods for markers in the context of massive data as well as high-dimensional viscoelastic variables based on feature ablation for drug development and accurate grading of liver fibrosis. We propose a novel classifier that uses the dynamical mechanical variables as input markers, which can identify healthy, diseased, and post-treatment liver tissues.
    Keywords:  cell mechanics; liver diagnosis; machine learning; rheology; viscoelastic
    DOI:  https://doi.org/10.3389/fbioe.2024.1404508
  13. Analyst. 2024 Jul 29.
      Cell-based assays are heavily relied on in the drug discovery pipeline, quickly pairing down large compound libraries to a manageable number of drug candidates for further characterization and evaluation. Monolayer cultures in which cells are deposited onto the bottom of well plates are the workhorse of many of these screens despite continued evidence of their inability to predict in vivo responses. Three-dimensional (3D) culture platforms can generate tissue-like environments with more representative cellular phenotypes than monolayers but have proven challenging to incorporate into already-developed workflows. Scaffold-based approaches are a tractable means of generating tissue-like environments, supporting cell-laden gels whose preparation is analogous to depositing cells in a well plate. Here, we describe supported gel slab (SGS) scaffolds prepared from commercially available materials, an adhesive spray, and a laser cutter. These cell-containing scaffolds can readily fit into well plates, providing a format compatible with current liquid handlers and analytical instrumentation. The scaffolds enable the evaluation of cellular responses in individual or stacked structures, which contain extracellular matrix-rich microenvironments. With a series of demonstrations, we highlight the utility of the readily assembled SGS scaffolds to quantify cellular responses. These readouts include confocal microscopy, quantifying cellular invasion in Transwell-like and stacked formats, generating multilayered spheroid-on-demand structures capable of providing spatially resolved maps of drug responses, and identifying potential chemotherapies in a screening application.
    DOI:  https://doi.org/10.1039/d4an00691g
  14. Bioessays. 2024 Aug 02. e2400055
      In textbook illustrations of migrating cells, actomyosin contractility is typically depicted as the contraction force necessary for cell body retraction. This dogma has been transformed by the molecular clutch model, which acknowledges that actomyosin traction forces also generate and transmit biomechanical signals at the leading edge, enabling cells to sense and shape their migratory path in mechanically complex environments. To fulfill these complementary functions, the actomyosin system assembles a gradient of contractile energy along the front-rear axis of migratory cells. Here, we highlight the hierarchic assembly and self-regulatory network structure of the actomyosin system and explain how the kinetics of different nonmuscle myosin II (NM II) paralogs synergize during contractile force generation. Our aim is to emphasize how protrusion formation, cell adhesion, contraction, and retraction are spatiotemporally integrated during different modes of migration, including chemotaxis and durotaxis. Finally, we hypothesize how different NM II paralogs might tune aspects of migration in vivo, highlighting future research directions.
    Keywords:  actomyosin; cell migration; chemotaxis; durotaxis; intracellular force generation; mechanotransduction; nonmuscle myosin II
    DOI:  https://doi.org/10.1002/bies.202400055
  15. bioRxiv. 2024 Jul 18. pii: 2024.07.16.603739. [Epub ahead of print]
      Enrichment of tumor-associated macrophages (TAMΦs) in the tumor microenvironment correlates with worse clinical outcomes in triple-negative breast cancer (TNBC) patients, prompting the development of therapies to inhibit TAMΦ infiltration. However, the lackluster efficacy of CCL2-based chemotaxis blockade in clinical trials suggests that a new understanding of monocyte/macrophage infiltration may be necessary. Here we demonstrate that random migration, and not only chemotaxis, drives macrophage tumor infiltration. We identified tumor- associated monocytes (TAMos) that display a dramatically enhanced migration capability, induced rapidly by the tumor microenvironment, that drives effective tumor infiltration, in contrast to low-motility differentiated macrophages. TAMo, not TAMΦ, promotes cancer cell proliferation through activation of the MAPK pathway. IL-6 secreted both by cancer cells and TAMo themselves enhances TAMo migration by increasing dendritic protrusion dynamics and myosin- based contractility via the JAK2/STAT3 signaling pathway. Independent from CCL2 mediated chemotaxis, IL-6 driven enhanced migration and pro-proliferative effect of TAMo were validated in a syngeneic TNBC mouse model. Depletion of IL-6 in cancer cells significantly attenuated monocyte infiltration and reversed TAMo-induced cancer cell proliferation. This work reveals the critical role random migration plays in monocyte driven TAMΦ enrichment in a tumor and pinpoints IL-6 as a potential therapeutic target in combination with CCL2 to ameliorate current strategies against TAMΦ infiltration.
    DOI:  https://doi.org/10.1101/2024.07.16.603739
  16. Biomacromolecules. 2024 Jul 31.
      In vitro tumor models were successfully constructed by 3D bioprinting; however, bioinks with proper viscosity, good biocompatibility, and tunable biophysical and biochemical properties are highly desirable for tumor models that closely recapitulated the main features of native tumors. Here, we developed a nanocomposite hydrogel bioink that was used to construct ovarian and colon cancer models by 3D bioprinting. The nanocomposite bioink was composed of aldehyde-modified cellulose nanocrystals (aCNCs), aldehyde-modified hyaluronic acid (aHA), and gelatin. The hydrogels possessed tunable gelation time, mechanical properties, and printability by controlling the ratio between aCNCs and gelatin. In addition, ovarian and colorectal cancer cells embedded in hydrogels showed high survival rates and rapid growth. By the combination of 3D bioprinting, ovarian and colorectal tumor models were constructed in vitro and used for drug screening. The results showed that gemcitabine had therapeutic effects on ovarian tumor cells. However, the ovarian tumor model showed drug resistance for oxaliplatin treatment.
    DOI:  https://doi.org/10.1021/acs.biomac.4c00671
  17. Lab Chip. 2024 Jul 30.
      Three-dimensional (3D) cellular assemblies, such as cancer spheroids and organoids, are increasingly valued for their physiological relevance, and versatility in biological applications. Nanopatterns that mimic the extracellular matrix provide crucial topological cues, creating a physiologically relevant cellular environment and guiding cellular behaviors. However, the high cost and complex, time-consuming nature of the nanofabrication process have limited the widespread adoption of nanopatterns in diverse biological applications. In this study, we present a straightforward and cost-effective elastomer replica molding method utilizing commercially available optical discs to generate various nanopatterns, such as nanogroove/ridge, nanoposts, and nanopits, varying in spacing and heights. Using the nanopatterned well chips (NW-Chips), we demonstrated the efficient formation of 3D multicellular self-assemblies of three different types of cancer cells. Our findings highlight the accessibility and affordability of optical discs as tools for nanopattern generation, offering promising avenues for modulating cell behaviors and advancing diverse biological applications.
    DOI:  https://doi.org/10.1039/d4lc00386a
  18. Stem Cell Reports. 2024 Jul 17. pii: S2213-6711(24)00208-X. [Epub ahead of print]
      Cell size is a crucial physical property that significantly impacts cellular physiology and function. However, the influence of cell size on stem cell specification remains largely unknown. Here, we investigated the dynamic changes in cell size during the differentiation of human pluripotent stem cells into definitive endoderm (DE). Interestingly, cell size exhibited a gradual decrease as DE differentiation progressed with higher stiffness. Furthermore, the application of hypertonic pressure or chemical to accelerate the reduction in cell size significantly and specifically enhanced DE differentiation. By functionally intervening in mechanosensitive elements, we have identified actomyosin activity as a crucial mediator of both DE differentiation and cell size reduction. Mechanistically, the reduction in cell size induces actomyosin-dependent angiomotin (AMOT) nuclear translocation, which suppresses Yes-associated protein (YAP) activity and thus facilitates DE differentiation. Together, our study has established a novel connection between cell size diminution and DE differentiation, which is mediated by AMOT nuclear translocation. Additionally, our findings suggest that the application of osmotic pressure can effectively promote human endodermal lineage differentiation.
    Keywords:  AMOT; YAP; actomyosin; cell size; human endoderm differentiation; osmotic pressure; pluripotent stem cell
    DOI:  https://doi.org/10.1016/j.stemcr.2024.07.001
  19. Acc Mater Res. 2023 Aug 25. 4(8): 704-715
      Programmable engineered tissues and the materials that support them are instrumental to the development of next-generation therapeutics and gaining new understanding of human biology. Toward these ends, recent years have brought a growing emphasis on the creation of "4D" hydrogel culture platforms-those that can be customized in 3D space and on demand over time. Many of the most powerful 4D-tunable biomaterials are photochemically regulated, affording users unmatched spatiotemporal modulation through high-yielding, synthetically tractable, and cytocompatible reactions. Precise physicochemical manipulation of gel networks has given us the ability to drive critical changes in cell fate across a diverse range of distance and time scales, including proliferation, migration, and differentiation through user-directed intracellular and intercellular signaling. This Account provides a survey of the numerous creative approaches taken by our lab and others to recapitulate the dynamically heterogeneous biochemistry underpinning in vivo extracellular matrix (ECM)-cell interactions via light-based network (de)decoration with biomolecules (e.g., peptides, proteins) and in situ protein activation/generation. We believe the insights gained from these studies can motivate disruptive improvements to emerging technologies, including low-variability organoid generation and culture, high-throughput drug screening, and personalized medicine. As photolithography and chemical modification strategies continue to mature, access to and control over new and increasingly complex biological pathways are being unlocked. The earliest hydrogel photopatterning efforts selectively encapsulated bioactive peptides and drugs into rudimentary gel volumes. Through continued exploration and refinement, next-generation materials now boast reversible, multiplexed, and/or Boolean logic-based biomolecule presentation, as well as functional activation at subcellular resolutions throughout 3D space. Lithographic hardware and software technologies, particularly those enabling image-guided patterning, allow researchers to precisely replicate complex biological structures within engineered tissue environments. The advent of bioorthogonal click chemistries has expanded 4D tissue engineering toolkits, permitting diverse constructs to be independently customized in the vicinity of any cell that is amenable to hydrogel-based culture. Additionally, the adoption of modern protein engineering techniques including genetic code expansion and chemoenzymatic alteration provides a roadmap toward site-specific modification of nearly any recombinant or isolated protein, affording installation of photoreactive and click handles without sacrificing their bioactivity. While the established bind, release, (de)activate paradigm in hydrogel photolithography continues to thrive alongside these modern engineering techniques, new studies are also demonstrating photocontrol of more complex or nonclassical operations, including engineered material-microorganism interfaces and functional protein photoassembly. Such creative approaches offer exciting new avenues for the field, including spatial control of on-demand biomolecule production from cellular depots and patterned bioactivity using a growing array of split protein pairs. Taken together, these technologies provide the foundation for truly biomimetic photopatterning of engineered tissues.
    DOI:  https://doi.org/10.1021/accountsmr.3c00062
  20. Explor Biomat X. 2024 ;1(2): 58-83
      Aim: The pleiotropic effect of fibroblast growth factor 2 (FGF2) on promoting myogenesis, angiogenesis, and innervation makes it an ideal growth factor for treating volumetric muscle loss (VML) injuries. While an initial delivery of FGF2 has demonstrated enhanced regenerative potential, the sustained delivery of FGF2 from scaffolds with robust structural properties as well as biophysical and biochemical signaling cues has yet to be explored for treating VML. The goal of this study is to develop an instructive fibrin microthread scaffold with intrinsic topographic alignment cues as well as regenerative signaling cues and a physiologically relevant, sustained release of FGF2 to direct myogenesis and ultimately enhance functional muscle regeneration.Methods: Heparin was passively adsorbed or carbodiimide-conjugated to microthreads, creating a biomimetic binding strategy, mimicking FGF2 sequestration in the extracellular matrix (ECM). It was also evaluated whether FGF2 incorporated into fibrin microthreads would yield sustained release. It was hypothesized that heparin-conjugated and co-incorporated (co-inc) fibrin microthreads would facilitate sustained release of FGF2 from the scaffold and enhance in vitro myoblast proliferation and outgrowth.
    Results: Toluidine blue staining and Fourier transform infrared spectroscopy confirmed that carbodiimide-conjugated heparin bound to fibrin microthreads in a dose-dependent manner. Release kinetics revealed that heparin-conjugated fibrin microthreads exhibited sustained release of FGF2 over a period of one week. An in vitro assay demonstrated that FGF2 released from microthreads remained bioactive, stimulating myoblast proliferation over four days. Finally, a cellular outgrowth assay suggests that FGF2 promotes increased outgrowth onto microthreads.
    Conclusions: It was anticipated that the combined effects of fibrin microthread structural properties, topographic alignment cues, and FGF2 release profiles will facilitate the fabrication of a biomimetic scaffold that enhances the regeneration of functional muscle tissue for the treatment of VML injuries.
    Keywords:  Fibroblast growth factor 2; fibrin; fibrin microthreads; myoblast; skeletal muscle; tissue engineering
    DOI:  https://doi.org/10.37349/ebmx.2024.00006
  21. Adv Healthc Mater. 2024 Jul 29. e2304374
      During metastasis, circulating tumor cells (CTCs) can travel in the bloodstream as individual cells or clusters, associated with fibrin and platelets. Clusters have a higher metastatic potential due to their increased ability to withstand shear stress and arrest in small vessels. Moreover, CTC-platelet interaction protects CTCs from shear stress and immune detection. The objective of this project is to develop a fibrinolytic platelet system to leverage platelet-CTC interactions and dissociate CTC clusters. For this approach, tissue plasminogen activator (tPA) is loaded onto two modified platelet systems: platelet Decoys and lyophilized platelets. The activities of the systems are characterized using a Förster Resonance Energy Transfer-based assay and an angiogenic assay. Furthermore, the ability of the system to dissociate cancer cell clusters in vitro is assessed using light transmission aggregometry. The data demonstrates that the fibrinolytic platelets can maintain tPA activity, interact with CTCs, and dissociate cancer cell clusters. Finally, fibrinolytic platelets are assessed in vivo, demonstrating a decreased tumor load and increased survival with tPA-Decoy treatment, which is selected as the optimal treatment based on favorable in vitro results and in vivo trials. Therefore, this fibrinolytic platelet approach is a promising method for leveraging platelet-CTC interactions to disperse CTC clusters and reduce metastasis.
    Keywords:  cancer cell clusters; fibrinolytic platelet decoys; metastasis; platelet‐cancer cell interaction
    DOI:  https://doi.org/10.1002/adhm.202304374
  22. Colloids Surf B Biointerfaces. 2024 Jul 26. pii: S0927-7765(24)00386-2. [Epub ahead of print]243 114127
      Conventional wound dressings have poor tissue adhesion and mechanical stability, restricting their applications in dynamic motion environments. Tannic acid (TA) was ideal candidates for current dressing materials due to their well-known antioxidant and anti-inflammatory properties. However, the inevitable polymerization problem of TA limited the one-step synthesis of dressings. Herein, we reported a simple one-pot method to prepare double-network hydrogels containing N-acryloyl glycinamide (NAGA), N-hydroxyethyl acrylamide (HEAA) and TA. The resulting NHT hydrogel exhibited excellent tensile properties, fatigue resistance, and notch insensitivity to ensure mechanical stability under large deformation and stress in vitro. The NHT hydrogel also demonstrated room-temperature self-healing, broad adhesion to various substrates, synergistic swelling ability. In addition, catechol and benzene rings from TA helped shield against UV radiation and acted as free radical scavengers to relieve oxidative stress in wound damage. As a result, full-layer wounds in mice treated with NHT patches showed a higher healing rate, in which epithelialization was completed within 14 days. The integrated function enables hydrogel to maintain mechanical stability in dynamic motion environments with high strain and defects, with great potential for future clinical translation.
    Keywords:  Mechanical properties; One-pot synthesis; Tannic acid; Wound dressing
    DOI:  https://doi.org/10.1016/j.colsurfb.2024.114127
  23. ACS Nano. 2024 Jul 30.
      The mechanical properties of nanoparticles play a crucial role in regulating nanobiointeractions, influencing processes such as blood circulation, tumor accumulation/penetration, and internalization into cancer cells. Consequently, they have a significant impact on drug delivery and therapeutic efficacy. However, it remains unclear whether and how macrophages alter their biological function in response to nanoparticle elasticity. Here, we report on the nano-mechanical biological effects resulting from the interactions between elastic silica nanoparticles (SNs) and macrophages. The SNs with variational elasticity Young's moduli ranging from 81 to 837 MPa were synthesized, and it was demonstrated that M2 [tumor-associated macrophages (TAMs)] could be repolarized to M1 by the soft SNs. Additionally, our findings revealed that cell endocytosis, membrane tension, the curvature protein Baiap2, and the cytoskeleton were all influenced by the elasticity of SNs. Moreover, the mechanically sensitive protein Piezo1 on the cell membrane was activated, leading to calcium ion influx, activation of the NF-κB pathway, and the initiation of an inflammatory response. In vivo experiments demonstrated that the softest 81 MPa SNs enhanced tumor penetration and accumulation and repolarized TAMs in intratumoral hypoxic regions, ultimately resulting in a significant inhibition of tumor growth. Taken together, this study has established a cellular feedback mechanism in response to nanoparticle elasticity, which induces plasma membrane deformation and subsequent activation of mechanosensitive signals. This provides a distinctive "nano-mechanical immunoengineering" strategy for reprogramming TAMs to enhance cancer immunotherapy.
    Keywords:  Piezo1; cancer immunotherapy; nano-mechanical immunoengineering; nanoparticle elasticity; tumor-associated macrophages
    DOI:  https://doi.org/10.1021/acsnano.4c04614