bims-ecemfi Biomed News
on ECM and fibroblasts
Issue of 2024–12–08
three papers selected by
Badri Narayanan Narasimhan, University of California, San Diego



  1. Acta Biomater. 2024 Nov 28. pii: S1742-7061(24)00710-4. [Epub ahead of print]
      Quiescent skeletal muscle satellite cells (SCs) located on myofibers activate in response to muscle injury to regenerate muscle; however, identifying the role of specific matrix signals on SC behavior in vivo is difficult. Therefore, we developed a viscoelastic hydrogel with tunable properties to encapsulate myofibers while maintaining stem cell niche polarity and SC-myofiber interactions to investigate how matrix signals, including viscoelasticity and the integrin-binding ligand arginyl-glycyl-aspartic acid (RGD), influence SC behavior during muscle regeneration. Viscoelastic hydrogels support myofiber culture while preserving SC stemness for up to 72 hours post-encapsulation, minimizing myofiber hypercontraction and SC hyperproliferation compared to Matrigel. Pax7 is continuously expressed in SCs on myofibers embedded in hydrogels with higher stress relaxation while SCs differentiate when embedded in elastic hydrogels. Increasing RGD concentrations activates SCs and translocates YAP/TAZ to the nucleus as revealed by photo-expansion microscopy. Deleting YAP/TAZ abrogates RGD-mediated activation of SCs, and thus, YAP/TAZ mediates RGD ligand-induced SC activation and subsequent proliferation. STATEMENT OF SIGNIFICANCE: Satellite cells (SCs) are responsible for muscle maintenance and regeneration, but how the extracellular matrix regulates SC function is less understood and would benefit from new biomaterial models that can recapitulate the complexity of SC niche in vitro. Upon isolation of myofibers, SCs exit quiescence, becoming activated. To circumvent this issue, we developed a viscoelastic hydrogel for encapsulating myofibers, which maintains SC quiescence and limits differentiation, allowing the study of RGD effects. We showed that increasing RGD concentration promotes activation and suppresses differentiation. Finally, to allow high resolution imaging for resolving the subcellular localization of YAP/TAZ transcriptional co-activators, we applied photo-expansion microscopy and gel-to-gel transfer techniques to quantify YAP/TAZ nuclear-cytoplasmic ratio, revealing that RGD-mediated activation relies on YAP/TAZ nuclear translocation.
    Keywords:  expansion microscopy; mechanosensing; muscle satellite cell; myofiber; viscoelastic hydrogel
    DOI:  https://doi.org/10.1016/j.actbio.2024.11.044
  2. Langmuir. 2024 Dec 04.
      The mammalian cell membrane is embedded with biomolecular condensates of protein and lipid clusters, which interact with an underlying viscoelastic cytoskeleton network to organize the cell surface and mechanically interact with the extracellular environment. However, the mechanical and thermodynamic interplay between the viscoelastic network and liquid-liquid phase separation of 2-dimensional (2D) lipid condensates remains poorly understood. Here, we engineer materials composed of 2D lipid membrane condensates embedded within a thin viscoelastic actin network. The network generates localized anisotropic stresses that deform lipid condensates into triangular morphologies with sharp edges and corners, shapes unseen in many 3D composite gels. Kinetic coarsening of phase-separating lipid condensates accelerates the viscoelastic relaxation of the network, leading to an effectively softer composite material over intermediate time scales. We dynamically manipulate the membrane composition to control the elastic-to-viscous crossover of the network. Such viscoelastic composite membranes may enable the development of coatings, catalytic surfaces, separation membranes, and other interfaces with tunable spatial organization and plasticity mechanisms.
    DOI:  https://doi.org/10.1021/acs.langmuir.4c03463
  3. Cells Dev. 2024 Dec 02. pii: S2667-2901(24)00094-9. [Epub ahead of print] 203984
      Morphogenetic movements and specification of germ layers during gastrulation are key processes that establish the vertebrate body plan. Despite substantial research into the role of tissue mechanics during gastrulation and detailed characterisation of the molecular signalling networks controlling fate determination, the interplay of mechanical cues and biochemical signals during fate specification is poorly understood. Morphogens that activate Activin/Nodal/Smad2 signalling play a key role in mesoderm induction and axial patterning. We investigate the interplay between a single molecular input and a mechanical input using the well-established ex vivo system of Activin-induced explants of the mid-blastula X. laevis animal cap ectoderm. Activin alone induces mesoderm to form a complex elongating tissue with axial patterning, making this system similar to gastruloids generated in other model organisms. We observed an increase in the expression of dorsal mesoderm markers, such as chordin and goosecoid, and loss of elongation, in Activin-induced explants that were mechanically stimulated through uniaxial compression during the induction period. In addition, head mesoderm specific markers, including cerberus 1, were also increased. We show that mechanical stimulation leads to an increase in nuclear β-catenin activity. Activation of β-catenin signalling is sufficient to induce head Organiser gene expression. Furthermore, inhibition of β-catenin is sufficient to rescue the effect of compression on an early Wnt-signalling response gene siamois. Taken together these observations support the role of mechanical stimulation in modulating Activin-dependent mesoderm induction in favour of head Organiser formation. Given the conserved role of β-catenin in the dorsal specification and the dynamic morphogenetic movements of dorsal gastrula regions, mechanics-dependent Organiser induction may be found in other vertebrate species. Finally, the finding that mechanical cues affect β-catenin-dependent axial specification can be applied in the future development of more biologically relevant and robust synthetic organoid systems.
    Keywords:  Embryonic induction; Head organiser; Mesoderm; Morphogenesis; Self-organization; Tissue mechanics
    DOI:  https://doi.org/10.1016/j.cdev.2024.203984