bims-ectoca Biomed News
on Epigenetic control of tolerance in cancer
Issue of 2023‒02‒12
fourteen papers selected by
Ankita Daiya, Birla Institute of Technology and Science



  1. Br J Cancer. 2023 Feb 09.
      Breast cancer (BC) is the most commonly diagnosed form of cancer and a leading cause of cancer-related deaths among women worldwide. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are homologous transcriptional coactivators and downstream effectors of Hippo signalling. YAP/TAZ activation has been revealed to play essential roles in multiple events of BC development, including tumour initiation, progression, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of YAP/TAZ-mediated oncogenesis in BC, and then systematically summarise the oncogenic roles of YAP/TAZ in various BC subtypes, BC stem cells (BCSCs) and tumour microenvironments (TMEs). Based on these findings, we will further discuss the clinical implications of YAP/TAZ-based targeted therapies in BC and the potential future direction.
    DOI:  https://doi.org/10.1038/s41416-023-02182-5
  2. Gan To Kagaku Ryoho. 2023 Jan;50(1): 7-12
      Cancer genomic medicine or cancer immunotherapy has led to a paradigm shift in cancer treatment. When the first treatment does not work, patients may be able to have second-line therapy or additional rounds of treatment after that, however, most advanced cancers eventually acquire resistance to those treatments. To stop this perpetual cycle, a deeper understanding of cancer evolutionary trajectories during the acquisition of therapeutic resistance is needed. We and others have recently provided evidence that non-genetic drug resistance is due to dormant persister cells, yet little is known about how persister cancer cells promote tumor relapse. To study the non-genetic evolution of cancer cells, a single-cell analysis will enable us to trace the phenotypic plasticity of cancer cells. As persister cancer cells are considered to act as a reservoir for drug-resistant mutants, we may be able to overcome cancer relapse or metastasis if we can better understand their evolutionary trajectories.
  3. Cancer Med. 2023 Feb 09.
      BACKGROUND: Hypoxia is commonly characterized by malignant tumors that promote the aggressiveness and metastatic potential of cancer. Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with approximately 46% capacity related to distant metastasis. Transcriptional factor yes-associated protein (YAP), a core component of the Hippo pathway, is associated with poor prognosis and outcome in cancer metastasis. Here, we explored the effect of hypoxia-mediated YAP activation and focal adhesions (FAs) turnover in mesenchymal TNBC cell migration.METHODS: We characterized the effect of hypoxia on YAP in different breast cancer cell lines using a hypoxia chamber and CoCl2 .
    RESULTS: Hypoxia-induced YAP nuclear translocation is significantly observed in normal breast epithelial cells, non-TNBC cells, mesenchymal TNBC cells, but not in basal-like TNBC cells. Functionally, we demonstrated that YAP activation was required for hypoxia to promote mesenchymal TNBC cell migration. Furthermore, hypoxia induced the localization of FAs at the leading edge of mesenchymal TNBC cells. In contrast, verteporfin (VP), a YAP inhibitor, significantly reduced the migration and the recruitment of nascent FAs at the cell periphery under hypoxia conditions, which only showed in mesenchymal TNBC cells.
    CONCLUSIONS: Our data support the hypothesis that YAP is novel factor and positively responsible for hypoxia-promoting mesenchymal TNBC cell migration. Our findings provide further evidence and outcomes to help prevent the progression of TNBC.
    Keywords:  YAP; cell migration; focal adhesions; hypoxia; mesenchymal TNBC
    DOI:  https://doi.org/10.1002/cam4.5680
  4. Int J Mol Sci. 2023 Jan 17. pii: 1828. [Epub ahead of print]24(3):
      Decades of research have investigated the mechanisms that lead to the origin of cancer, striving to identify tumor-initiating cells. These cells, also known as cancer stem cells, are characterized by the ability to self-renew, to give rise to differentiated tumor populations, and on a larger scale, are deemed responsible not only for tumor initiation but also for recurrent tumors, often resistant to chemotherapy and radiotherapy. Long noncoding RNAs are RNA molecules longer than 200 nt, lacking the ability to code for proteins, with recognized roles as fine regulators of gene expression. They can exert these functions through a variety of mechanisms, acting at almost all steps of gene expression, from modulation of the epigenetic state of chromatin to modulation of protein stability. In all cases, lncRNAs do not work alone, but they always interact with other RNA molecules, either coding or non-coding, or with protein factors. In this review, we summarize the latest results obtained about the involvement of lncRNAs in the initiating cells of several types of tumors, and highlight the different mechanisms through which they work, while discussing how the modulation of a lncRNA can affect several aspects of tumor onset and progression.
    Keywords:  RNA-binding protein; cancer stem cells; ceRNAs; epigenetic regulation; lncRNAs
    DOI:  https://doi.org/10.3390/ijms24031828
  5. Pharmacol Rev. 2023 Jan;75(1): 35-61
      Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
    DOI:  https://doi.org/10.1124/pharmrev.122.000612
  6. J Transl Med. 2023 Feb 09. 21(1): 99
      BACKGROUND: Osteosarcoma (OS) is the most frequent and aggressive primary malignant sarcoma among adolescents and chemotherapy has not substantially progressed for decades. New insights into OS development and therapeutic strategies are urgently needed.METHODS: We analyzed integrated single-cell transcriptomes, bulk RNA-seq, and microarray data from Gene Expression Omnibus (GEO) datasets. We also used Weighted Gene Co-expression Network Analysis (WGCNA), Gene set enrichment analysis (GSEA), and Gene set variation analysis (GSVA), along with Simple ClinVar and Enrichr web servers.
    RESULTS: The findings of integrated single-cell analysis showed that OS arises from imperfect osteogenesis during development. Novel abnormalities comprised deficient TGFβ and P53 signal pathways, and cell cycle pathway activation, and a potentially new driver mutation in the interferon induced transmembrane protein 5 (IFITM5) that might function as a pathogenic factor in OS. Osteosarcoma is characterized by oncocyte heterogeneity, especially in immunogenic and adipocyte-like subtypes that respectively promote and hamper OS treatment. Etoposide is a promising chemotherapeutic that provides palliation by affecting the subtype of OS and correcting the abnormal pathways.
    CONCLUSION: Various abnormal signal pathways play indispensable roles in OS development. We explored the heterogeneity and underlying mechanisms of OS and generated findings that will assist with OS assessment and selecting optimal therapies.
    Keywords:  Abnormal signal pathway; Chemotherapy; Oncocyte heterogeneity; Osteosarcoma
    DOI:  https://doi.org/10.1186/s12967-023-03961-7
  7. Autophagy. 2023 Feb 06.
      Drug-tolerant persister (DTP) cancer cells drive residual tumor and relapse. However, the mechanisms underlying DTP state development are largely unexplored. In a recent study, we determined that PINK1-mediated mitophagy favors DTP generation in the context of MAPK inhibition therapy. DTP cells that persist in the presence of a MAPK inhibitor exhibit mitochondria-dependent metabolism. During DTP state development, MYC depletion alleviates the transcriptional repression of PINK1, resulting in PINK1 upregulation and mitophagy activation. PINK1-mediated mitophagy is essential for mitochondrial homeostasis in DTP cells. Either knockdown of PINK1 or mitophagy inhibition eradicates DTP cells and achieves complete responses to MAPK inhibition therapy. This study reveals a novel role of mitophagy as a protective mechanism for DTP development.
    Keywords:  Drug-tolerant persister; MAPK inhibitor; PINK1; mitophagy; quiescent cancer cells
    DOI:  https://doi.org/10.1080/15548627.2023.2177398
  8. Int J Mol Sci. 2023 Jan 20. pii: 2122. [Epub ahead of print]24(3):
      Cancer stem cells are found in many cancer types. They comprise a distinct subpopulation of cells within the tumor that exhibit properties of stem cells. They express a number of cell surface markers, such as CD133, CD44, ALDH, and EpCAM, as well as embryonic transcription factors Oct4, Nanog, and SOX2. CSCs are more resistant to conventional chemotherapy and can potentially drive tumor relapse. Therefore, it is essential to understand the molecular mechanisms that drive chemoresistance and to target them with specific therapy effectively. Highly conserved developmental signaling pathways such as Wnt, Hedgehog, and Notch are commonly reported to play a role in CSCs chemoresistance development. Studies show that particular pathway inhibitors combined with conventional therapy may re-establish sensitivity to the conventional therapy. Another significant contributor of chemoresistance is a specific tumor microenvironment. Surrounding stroma in the form of cancer-associated fibroblasts, macrophages, endothelial cells, and extracellular matrix components produce cytokines and other factors, thus creating a favorable environment and decreasing the cytotoxic effects of chemotherapy. Anti-stromal agents may potentially help to overcome these effects. Epigenetic changes and autophagy were also among the commonly reported mechanisms of chemoresistance. This review provides an overview of signaling pathway components involved in the development of chemoresistance of CSCs and gathers evidence from experimental studies in which CSCs can be re-sensitized to conventional chemotherapy agents across different cancer types.
    Keywords:  cancer stem cells; cancer therapeutics; chemoresistance; signaling pathways
    DOI:  https://doi.org/10.3390/ijms24032122
  9. Science. 2023 Feb 10. 379(6632): eaaw3835
      The concept of an epigenetic landscape describing potential cellular fates arising from pluripotent cells, first advanced by Conrad Waddington, has evolved in light of experiments showing nondeterministic outcomes of regulatory processes and mathematical methods for quantifying stochasticity. In this Review, we discuss modern approaches to epigenetic and gene regulation landscapes and the associated ideas of entropy and attractor states, illustrating how their definitions are both more precise and relevant to understanding cancer etiology and the plasticity of cancerous states. We address the interplay between different types of regulatory landscapes and how their changes underlie cancer progression. We also consider the roles of cellular aging and intrinsic and extrinsic stimuli in modulating cellular states and how landscape alterations can be quantitatively mapped onto phenotypic outcomes and thereby used in therapy development.
    DOI:  https://doi.org/10.1126/science.aaw3835
  10. Cell Stress Chaperones. 2023 Feb 11.
      Protein homeostasis involves a number of overlapping mechanisms, including the autophagy program, that can lead to the resolution of protein damage. We aimed in this study to examine mechanisms of autophagy in the proteotoxic stress response. We found that such stress results in a rapid elevation in the rate of autophagy in mammalian cells. Induction of this process occurred coincidentally with the increased release of extracellular vesicles (EVs) into the extracellular microenvironment. We next found that purified EVs that had been released from stressed cells were capable of directly increasing autophagic flux in recipient cells. The EVs contained a range of cargo proteins, including HSP70, BAG3, and activated transcription factor phospho-NRF2 (pNRF2). NRF2 regulates the activation of both the oxidative stress response and autophagy genes. Both heat shock and exposure of cells to proteotoxic stress-induced EVs increased the intracellular levels of pNRF2 in cells. Heat shock-induced proteotoxicity also led to increases in the levels of proteins in the oxidative stress response, including HO-1 and NQO1, as well as the key autophagy proteins LC3, ATG5, and ATG7, known to be regulated by NRF2. Increases in these autophagy proteins were dependent on the expression of NRF2 and were ablated by NRF2 knockdown.
    Keywords:  Autophagy; Extracellular vesicles (EVs); Heat shock (HS); LC3; NRF2; Proteotoxic stress
    DOI:  https://doi.org/10.1007/s12192-023-01326-z
  11. Biomed Pharmacother. 2023 Feb 03. pii: S0753-3322(23)00101-4. [Epub ahead of print]160 114313
      Up to 18% of cancer-related deaths worldwide are attributed to lung tumor and global burden of this type of cancer is ascending. Different factors are responsible for development of lung cancer such as smoking, environmental factors and genetic mutations. EZH2 is a vital protein with catalytic activity and belongs to PCR2 family. EZH2 has been implicated in regulating gene expression by binding to promoter of targets. The importance of EZH2 in lung cancer is discussed in current manuscript. Activation of EZH2 significantly elevates the proliferation rate of lung cancer. Furthermore, metastasis and associated molecular mechanisms including EMT undergo activation by EZH2 in enhancing the lung cancer progression. The response of lung cancer to therapy can be significantly diminished due to EZH2 upregulation. Since EZH2 increases tumor progression, anti-cancer agents suppressing its expression reduce malignancy. In spite of significant effort in understanding modulatory function of EZH2 on other pathways, it appears that EZH2 can be also regulated and controlled by other factors that are described in current review. Therefore, translating current findings to clinic can improve treatment and management of lung cancer patients.
    Keywords:  Cancer therapy; Drug resistance; EZH2 signaling; Lung cancer; Non-coding RNAs
    DOI:  https://doi.org/10.1016/j.biopha.2023.114313
  12. Cell. 2023 Feb 02. pii: S0092-8674(23)00007-7. [Epub ahead of print]
      Chromatin landscapes are disrupted during DNA replication and must be restored faithfully to maintain genome regulation and cell identity. The histone H3-H4 modification landscape is restored by parental histone recycling and modification of new histones. How DNA replication impacts on histone H2A-H2B is currently unknown. Here, we measure H2A-H2B modifications and H2A.Z during DNA replication and across the cell cycle using quantitative genomics. We show that H2AK119ub1, H2BK120ub1, and H2A.Z are recycled accurately during DNA replication. Modified H2A-H2B are segregated symmetrically to daughter strands via POLA1 on the lagging strand, but independent of H3-H4 recycling. Post-replication, H2A-H2B modification and variant landscapes are quickly restored, and H2AK119ub1 guides accurate restoration of H3K27me3. This work reveals epigenetic transmission of parental H2A-H2B during DNA replication and identifies cross talk between H3-H4 and H2A-H2B modifications in epigenome propagation. We propose that rapid short-term memory of recycled H2A-H2B modifications facilitates restoration of stable H3-H4 chromatin states.
    Keywords:  DNA replication; H2A; H2A.Z; H2B; chromatin; histone PTM cross talk; histone recycling; polycomb; post-translational modifications; ubiquitination
    DOI:  https://doi.org/10.1016/j.cell.2023.01.007
  13. Int J Mol Sci. 2023 Jan 20. pii: 2086. [Epub ahead of print]24(3):
      Reactive oxygen species (ROS) represent a group of high reactive molecules with dualistic natures since they can induce cytotoxicity or regulate cellular physiology. Among the ROS, the superoxide anion radical (O2·-) is a key redox signaling molecule prominently generated by the NADPH oxidase (NOX) enzyme family and by the mitochondrial electron transport chain. Notably, altered redox balance and deregulated redox signaling are recognized hallmarks of cancer and are involved in malignant progression and resistance to drugs treatment. Since oxidative stress and metabolism of cancer cells are strictly intertwined, in this review, we focus on the emerging roles of NOX enzymes as important modulators of metabolic reprogramming in cancer. The NOX family includes seven isoforms with different activation mechanisms, widely expressed in several tissues. In particular, we dissect the contribute of NOX1, NOX2, and NOX4 enzymes in the modulation of cellular metabolism and highlight their potential role as a new therapeutic target for tumor metabolism rewiring.
    Keywords:  NADPH oxidase; NOX; ROS; cell metabolism; glycolytic enzymes; metabolic reprogramming; reactive oxygen species; redox metabolism
    DOI:  https://doi.org/10.3390/ijms24032086
  14. Cancer Metastasis Rev. 2023 Feb 09.
      The biological complexity of cancer represents a tremendous clinical challenge, resulting in the frequent failure of current treatment protocols. In the rapidly evolving scenario of a growing tumor, anticancer treatments impose a drastic perturbation not only to cancer cells but also to the tumor microenvironment, killing a portion of the cells and inducing a massive stress response in the survivors. Consequently, treatments can act as a double-edged sword by inducing a temporary response while laying the ground for therapy resistance and subsequent disease progression. Cancer cell dormancy (or quiescence) is a central theme in tumor evolution, being tightly linked to the tumor's ability to survive cytotoxic challenges, metastasize, and resist immune-mediated attack. Accordingly, quiescent cancer cells (QCCs) have been detected in virtually all the stages of tumor development. In recent years, an increasing number of studies have focused on the characterization of quiescent/therapy resistant cancer cells, unveiling QCCs core transcriptional programs, metabolic plasticity, and mechanisms of immune escape. At the same time, our partial understanding of tumor quiescence reflects the difficulty to identify stable QCCs biomarkers/therapeutic targets and to control cancer dormancy in clinical settings. This review focuses on recent discoveries in the interrelated fields of dormancy, stemness, and therapy resistance, discussing experimental evidences in the frame of a nonlinear dynamics approach, and exploring the possibility that tumor quiescence may represent not only a peril but also a potential therapeutic resource.
    Keywords:  Cancer stem cells; Dormancy; Quiescence; Stemness; Therapy resistance; Tumor relapse
    DOI:  https://doi.org/10.1007/s10555-023-10092-4