Aging (Albany NY). 2024 Jul 05. 16
OBJECTIVE: In this study, we investigated the mechanism of action of LIMK1 in cervical cancer progression.METHODS: The biological role of LIMK1 in regulating the growth, invasion, and metastasis of cervical cancer was studied in SiHa, CaSki cells and nude mice tumor models. The role of LIMK1 in the growth of cervical cancer was evaluated by HE staining. The role of LIMK1 in the invasion, metastasis, and proliferation of cervical cancer was evaluated by cell scratch, Transwell, and monoclonal experiments. The interaction among LIMK1, ROS, and Src was evaluated by Western blotting. The effects of regulating ROS and p-Src expression on LIMK1 in the migration/invasion and proliferation of cervical cancer cells were evaluated through cellular functional assays.
RESULTS: Overexpression of LIMK1 promoted tumor growth in nude mice. Cell scratch, Transwell, and monoclonal experiments suggested that LIMK1 promoted the invasion, metastasis, and proliferation of cervical cancer cells. Western blotting suggested that LIMK1 can promote the expression of ROS-related proteins NOX2, NOX4, p-Src, and downstream proteins p-FAK, p-ROCK1/2, p-Cofilin-1, F-actin and inhibit the expression of p-SHP2 protein. Correction experiments showed that LIMK1 regulated the expression of p-FAK and p-Cofilin-1 proteins by regulating ROS and p-Src. Through the detection of cervical cancer cell functions, it was found that the activation of ROS and p-Src induced by LIMK1 is an early event that promotes the migration, proliferation, and invasion of cervical cancer cells.
CONCLUSIONS: LIMK1 promotes the expression of F-actin and promotes the development of cervical cancer by regulating the oxidative stress/Src-mediated p-FAK/p-ROCK1/2/p-Cofilin-1 pathway.
Keywords: LIMK1; Src; cervical cancer; oxidative stress