Genes (Basel). 2024 Jul 26. pii: 988. [Epub ahead of print]15(8):
Eukaryotic genomes are organized into chromatin domains through long-range chromatin interactions which are mediated by the binding of architectural proteins, such as CTCF and cohesin, and histone modifications. Based on the published Hi-C and ChIP-seq datasets in human monocyte-derived macrophages, we identified 206 and 127 differential chromatin interactions (DCIs) that were not located within transcription readthrough regions in influenza A virus- and interferon β-treated cells, respectively, and found that the binding positions of CTCF and RAD21 within more than half of the DCI sites did not change. However, five histone modifications, H3K4me3, H3K27ac, H3K36me3, H3K9me3, and H3K27me3, showed significantly more dramatic changes than CTCF and RAD21 within the DCI sites. For H3K4me3, H3K27ac, H3K36me3, and H3K27me3, significantly more dramatic changes were observed outside than within the DCI sites. We further applied a motif scanning approach to discover proteins that might correlate with changes in histone modifications and chromatin interactions and found that PRDM9, ZNF384, and STAT2 frequently bound to DNA sequences corresponding to 1 kb genomic intervals with gains or losses of a histone modification within the DCI sites. This study explores the dynamic regulation of chromatin interactions and extends the current knowledge of the relationship between histone modifications and chromatin interactions.
Keywords: CTCF; differential chromatin interaction; histone modification