bims-engexo Biomed News
on Engineered exosomes
Issue of 2024‒08‒25
ten papers selected by
Ravindran Jaganathan, Universiti Kuala Lumpur



  1. Trends Cancer. 2024 Aug 20. pii: S2405-8033(24)00158-4. [Epub ahead of print]
      Exosomes are regarded as having transformative potential for clinical applications. Exosome-based liquid biopsies offer a noninvasive method for early cancer detection and real-time disease monitoring. Clinical trials are underway to validate the efficacy of exosomal biomarkers for enhancing diagnostic accuracy and predicting treatment responses. Additionally, engineered exosomes are being developed as targeted drug delivery systems that can navigate the bloodstream to deliver therapeutic agents to tumor sites, thus enhancing treatment efficacy while minimizing systemic toxicity. Exosomes also exhibit immunomodulatory properties, which are being harnessed to boost antitumor immune responses. In this review, we detail the latest advances in clinical trials and research studies, underscoring the potential of exosomes to revolutionize cancer care.
    Keywords:  biomarkers; cancer therapy; clinical applications; drug delivery; exosomes; immunotherapies
    DOI:  https://doi.org/10.1016/j.trecan.2024.07.010
  2. Nanoscale. 2024 Aug 22.
      Extracellular vesicles (EVs) have gained widespread interest due to their potential in the diagnosis and treatment of inflammation, autoimmune diseases, and cancers. EVs are lipidic vesicles comprising vesicles of endosomal origin called exosomes, microvesicles from membrane shedding, and apoptotic bodies from programmed cell death membrane blebbing that carry complex sets of cargo from their cells of origin, including proteins, lipids, mRNA, and DNA. EVs are rich in integrin proteins that facilitate intrinsic cellular communication to deliver their cargo contents and can also be used as biomarkers to study respective cellular conditions. Within this background, we hypothesized that when these EVs are hybridized with synthetic liposomes, it would help navigate the hybrid construct in the complex biological environment to find its target. Toward this endeavor, we have hybridized a synthetic liposome with EVs (herein called LEVs) derived from mouse breast cancer (4T1 tumors) cells and incorporated a rhodamine-B/near-infrared fluorescent dye to investigate their potential for cellular targeting and tumor delivery. Using membrane extrusion, we have successfully hybridized both entities resulting in the formation of LEVs and characterized their colloidal properties and stability over a period. While EVs are broadly dispersed nano- and micron-sized vesicles, LEVs are engineered as monodispersed with an average hydrodynamic size of 140 ± 5. Using immunoblotting and ELISA, we monitored and quantified the EV-specific protein CD63 and other characteristic proteins such as CD9 and CD81, which were taken as a handle to ensure the reproducibility of EVs and thus LEVs. These LEVs were further challenged with mice bearing orthotopic 4T1 breast tumors and the LEV uptake was found to be maximum in tumors and organs like the liver, spleen, and lungs when compared to control PEGylated liposomes in live animal imaging. Likewise, the constructs were capable of finding lung metastasis as observed in ex vivo imaging. We anticipate that this study can open avenues for drug delivery solutions that are superior in target recognition.
    DOI:  https://doi.org/10.1039/d4nr02191f
  3. BME Front. 2024 ;5 0047
      Leveraging bacteria for cancer immunotherapy has gradually attracted wide attention since the discovery of "Cloey's toxin." However, one of the persistent challenges for bacteria-based therapy is striking a balance between safety and immunogenicity. Genetically engineered bacteria with virulence factors removed could further enhance antitumor ability by integrating genetic elements. In addition, bacterial derivatives, including outer membrane vesicles (OMVs) produced by bacterial secretion and nanovesicles synthesized by modification of OMVs, could enhance antitumor immunity while improving safety. This perspective discusses the unique advantages of engineered bacteria and their derivatives for immunotherapy, as well as the challenges that need to be overcome to achieve clinical translation.
    DOI:  https://doi.org/10.34133/bmef.0047
  4. Oncogene. 2024 Aug 18.
      Chemoresistance is an important cause of treatment failure in bladder cancer, and identifying genes that confer drug resistance is an important step toward developing new therapeutic strategies to improve treatment outcomes. In the present study, we show that gemcitabine plus cisplatin (GEM/DDP) therapy induces NF-κB signaling, which promotes p65-mediated transcriptional activation of OIP5. OIP5 recruits the E3 ubiquitin ligase TRIP12 to bind to and degrade the phosphatase PPP1CB, thereby enhancing the transcription factor activity of YBX1. This in turn upregulates drug-resistance-related genes under the transcriptional control of YBX1, leading to chemoresistance. Moreover, PPP1CB degradation can enhance the phosphorylation activity of IKKβ, triggering the NF-κB signaling cascade, which further stimulates OIP5 gene expression, thus forming a negative feedback regulatory loop. Consistently, elevated OIP5 expression was associated with chemoresistance and poor prognosis in patients with bladder cancer. Furthermore, we used a CRISPR/Cas9-based engineered gene circuit, which can monitor the progression of chemoresistance in real-time, to induce OIP5 knockout upon detection of increased NF-κB signaling. The gene circuit significantly inhibited tumor cell growth in vivo, underscoring the potential for synergy between gene therapy and chemotherapy in the treatment of cancer.
    DOI:  https://doi.org/10.1038/s41388-024-03136-8
  5. J Biomed Sci. 2024 Aug 20. 31(1): 81
      BACKGROUND: Betulinic acid (BA) has been well investigated for its antiproliferative and mitochondrial pathway-mediated apoptosis-inducing effects on various cancers. However, its poor solubility and off-target activity have limited its utility in clinical trials. Additionally, the immune modulatory role of betulinic acid analogue in the tumor microenvironment (TME) is largely unknown. Here, we designed a potential nanotherapy for colorectal cancer (CRC) with a lead betulinic acid analogue, named as 2c, carrying a 1,2,3-triazole-moiety attached to BA through a linker, found more effective than BA for inhibiting CRC cell lines, and was chosen here for this investigation. Epithelial cell adhesion molecule (EpCAM) is highly overexpressed on the CRC cell membrane. A single-stranded short oligonucleotide sequence, aptamer (Apt), that folds into a 3D-defined architecture can be used as a targeting ligand for its specific binding to a target protein. EpCAM targeting aptamer was designed for site-specific homing of aptamer-conjugated-2c-loaded nanoparticles (Apt-2cNP) at the CRC tumor site to enhance therapeutic potential and reduce off-target toxicity in normal cells. We investigated the in vitro and in vivo therapeutic efficacy and anti-tumorigenic immune response of aptamer conjugated nanotherapy in CRC-TME.METHODS: After the characterization of nanoengineered aptamer conjugated betulinic acid nanotherapy, we evaluated therapeutic efficacy, tumor targeting efficiency, and anti-tumorigenic immune response using cell-based assays and mouse and rat models.
    RESULTS: We found that Apt-2cNP improved drug bioavailability, enhanced its biological half-life, improved antiproliferative activity, and minimized off-target cytotoxicity. Importantly, in an in vivo TME, Apt-2cNP showed promising signs of anti-tumorigenic immune response (increased mDC/pDC ratio, enhanced M1 macrophage population, and CD8 T-cells). Furthermore, in vivo upregulation of pro-apoptotic while downregulation of anti-apoptotic genes and significant healing efficacy on cancer tissue histopathology suggest that Apt-2cNP had predominantly greater therapeutic potential than the non-aptamer-conjugated nanoparticles and free drug. Moreover, we observed greater tumor accumulation of the radiolabeled Apt-2cNP by live imaging in the CRC rat model.
    CONCLUSIONS: Enhanced therapeutic efficacy and robust anti-tumorigenic immune response of Apt-2cNP in the CRC-TME are promising indicators of its potential as a prospective therapeutic agent for managing CRC. However, further studies are warranted.
    Keywords:  Aptamer; Betulinic acid analogue; Colorectal cancer; EpCAM; Immune response; Tumor-microenvironment
    DOI:  https://doi.org/10.1186/s12929-024-01069-8
  6. Int J Nanomedicine. 2024 ;19 8253-8270
      Background: Myocardial infarction (MI) is characterized by irreversible cardiomyocyte death resulting from an inadequate supply of oxygenated blood to the myocardium. Recent studies have indicated that ferroptosis, a form of regulated cell death, exacerbates myocardial injury during MI. Concurrently, the upregulation of CD47 on the surface of damaged myocardium following MI impairs the clearance of dead cells by macrophages, thereby hindering efferocytosis. In this context, simultaneously inhibiting ferroptosis and enhancing efferocytosis may represent a promising strategy to mitigate myocardial damage post-MI.Methods: In this study, we engineered platelet membrane-coated hollow mesoporous silicon nanoparticles (HMSN) to serve as a drug delivery system, encapsulating ferroptosis inhibitor, Ferrostatin-1, along with an anti-CD47 antibody. We aimed to assess the potential of these nanoparticles (designated as Fer-aCD47@PHMSN) to specifically target the site of MI and evaluate their efficacy in reducing cardiomyocyte death and inflammation.
    Results: The platelet membrane coating on the nanoparticles significantly enhanced their ability to successfully target the site of myocardial infarction (MI). Our findings demonstrate that treatment with Fer-aCD47@PHMSN resulted in a 38.5% reduction in cardiomyocyte ferroptosis under hypoxia, indicated by decreased lipid peroxidation and increased in vitro. Additionally, Fer-aCD47@PHMSN improved cardiomyocyte efferocytosis by approximately 15% in vitro. In MI mice treated with Fer-aCD47@PHMSN, we observed a substantial reduction in cardiomyocyte death (nearly 30%), decreased inflammation, and significant improvement in cardiac function.
    Conclusion: Our results demonstrated that the cooperation between the two agents induced anti-ferroptosis effects and enhanced dead cardiomyocyte clearance by macrophage as well as anti-inflammation effects. Thus, our nanoparticle Fer-aCD47@PHMSN provides a new therapeutic strategy for targeted therapy of MI.
    Keywords:  HMSN; efferocytosis; ferroptosis; myocardial infarction
    DOI:  https://doi.org/10.2147/IJN.S461212
  7. ACS Synth Biol. 2024 Aug 22.
      The field of Engineered Living Materials (ELMs) integrates engineered living organisms into natural biomaterials to achieve diverse objectives. Multiorganism consortia, prevalent in both naturally occurring and synthetic microbial cultures, exhibit complex functionalities and interrelationships, extending the scope of what can be achieved with individual engineered bacterial strains. However, the ELMs comprising microbial consortia are still in the developmental stage. In this Review, we introduce two strategies for designing ELMs constituted of microbial consortia: a top-down strategy, which involves characterizing microbial interactions and mimicking and reconstructing natural ecosystems, and a bottom-up strategy, which entails the rational design of synthetic consortia and their assembly with material substrates to achieve user-defined functions. Next, we summarize technologies from synthetic biology that facilitate the efficient engineering of microbial consortia for performing tasks more complex than those that can be done with single bacterial strains. Finally, we discuss essential challenges and future perspectives for microbial consortia-based ELMs.
    Keywords:  division of labor; engineered living materials; microbial consortia; synthetic biology toolkits
    DOI:  https://doi.org/10.1021/acssynbio.4c00313
  8. Front Endocrinol (Lausanne). 2024 ;15 1355387
      Tumors present a formidable health risk with limited curability and high mortality; existing treatments face challenges in addressing the unique tumor microenvironment (hypoxia, low pH, and high permeability), necessitating the development of new therapeutic approaches. Under certain circumstances, certain bacteria, especially anaerobes or parthenogenetic anaerobes, accumulate and proliferate in the tumor environment. This phenomenon activates a series of responses in the body that ultimately produce anti-tumor effects. These bacteria can target and colonize the tumor microenvironment, promoting responses aimed at targeting and fighting tumor cells. Understanding and exploiting such interactions holds promise for innovative therapeutic strategies, potentially augmenting existing treatments and contributing to the development of more effective and targeted approaches to fighting tumors. This paper reviews the tumor-promoting mechanisms and anti-tumor effects of the digestive tract microbiome and describes bacterial therapeutic strategies for tumors, including natural and engineered anti-tumor strategies.
    Keywords:  anti-oncogenic effect; gut microbiota; therapy; tumor; tumorigenic effect
    DOI:  https://doi.org/10.3389/fendo.2024.1355387
  9. Sichuan Da Xue Xue Bao Yi Xue Ban. 2024 Jul 20. 55(4): 861-871
      Objective: To develop engineered bacterial membrane biomimetic nanoparticles, Angiopep-2 E. coli membrane (ANG-2 EM)@PDA-PEI-CpG (ANG-2 EM@PPC), for efficient targeted drug delivery in the treatment of glioma, and to provide theoretical and technical support for targeted glioma therapy.Methods: The expression of inaX-N-angiopep-2 engineered bacteria was constructed in the laboratory, and ANG-2 EM was obtained through lysozyme treatment and ultrafiltration centrifugation. ANG-2 EM@PPC was prepared by ultrasonication of bacterial membranes. Western blotting, agarose gel electrophoresis, and transmission electron microscopy (TEM) were used to verify the preparation. Particle size and Zeta potential were measured to investigate the stability of ANG-2 EM@PPC. Regarding cell experiments, CCK-8 assay was performed to determine the effect of ANG-2 EM@PPC on the survival rate of neutrophils. A flow chamber model was designed and constructed, and the uptake efficiency of neutrophils was measured by flow cytometry to investigate the hitchhiking efficiency of ANG 2 EM@PPC on neutrophils in inflammatory environment. Neutrophil death patterns were characterized by fluorescence microscopy, and flow cytometry and Western blotting were performed to examine neutrophil apoptotic bodies and the proportion of apoptotic bodies produced. Regarding animal experiments, a mouse model of in situ glioma was established and the inflammatory environment of tumor tissue was verified. The tumor model mice were divided into three groups, including DiR group, EM@PPC group, and ANG-2 EM@PPC group (all n=3), which were injected with DiR, ANG-2 EM@PDA-PEI-CpG, and EM@PDA-PEI-CpG via the tail vein, respectively (all at 10 mg/kg). Fluorescence images of organs and the brain were used to examine the distribution of the three formulations in vivo and in the brain. The tumor model mice were further divided into PBS group, PDA group, PC group, PPC group, EM@PPC group, and ANG-2 EM@PPC group (all n=4), which were injected with PBS, PDA, PC, PPC, EM@PPC, and ANG-2 EM@PPC injected via the tail vein, respectively (all at 10 mg/kg). Imaging was performed in vivo to observe tumor regression, and the survival rate and body mass of mice were measured to evaluate in vivo pharmacodynamics. TUNEL staining (brain tissue) and HE staining (brain, heart, liver, spleen, lung and kidney tissues) were performed to evaluate the therapeutic effect.
    Results: The results of TEM showed successful preparation of engineered bacterial membrane biomimetic nanoparticles, with PPC exhibiting a distinct shell-core structure and a shell thickness of about 8.2 nm. Due to the coating of ANG-2 EM, the shell thickness of ANG-2 EM@PPC increased to about 9.6 nm, with a clear bacterial membrane layer on the surface. Stability was maintained for at least one week. ANG-2 EM@PPC had no significant effect on the activity of neutrophils according to the findings from the CCK-8 assay. Flow cytometry showed that ANG-2 EM@PPC uptake is enhanced in activated neutrophils and hitchhiking on neutrophils was more efficient in the stationary state than that in the flowing condition. Compared with the EM@PPC group, the neutrophil hitchhiking ability of the ANG-2 EM@PPC group was enhanced (uptake efficiency 24.9% vs. 31.1%). Fluorescence microscopy showed that ANG-2 EM@PPC changed the death pathway of neutrophils from neutrophil extracellular traps-osis (NETosis) to apoptosis. Western blot confirmed the production of neutrophil apoptotic bodies, and flow cytometry showed that the production rate was as high as 77.7%. Animal experiments showed that there was no significant difference in the distribution of engineered bacterial membrane biomimetic nanoparticles in the organs (heart, liver, spleen, lungs, and kidney) in the DiR group, the EM@PPC gropu, and the ANG-2 EM@PPC group (P>0.05), but there was higher distribution in the brain tissue in EM@PPC and ANG-2 EM@PPC groups compared to the DiR group (P<0.05). Engineered bacterial membrane biomimetic nanoparticles crossed the blood-brain barrier (BBB), and exhibited high affinity to and internalization by neutrophils located in brain tumors. Compared with PBS, PDA, PC, and PPC groups, the survival rate and body mass of mice in the EM@PPC group were improved, tumor fluorescence intensity was weakened, and apoptotic cells were increased. These trends were even more prominent in the ANG-2 EM@PPC group. No abnormality was found in the HE staining of any group.
    Conclusion: An ANG-2 EM@PPC nanodelivery system with inflammation response characteristics was successfully prepared, capable of crossing BBB and targeting the tumor inflammatory microenvironment to improve the anti-glioma efficacy. This study provides a new drug delivery strategy for glioma treatment and offers a new idea for targeted drug delivery in the non-invasive inflammatory microenvironments in other central nervous system diseases.
    Keywords:  Blood-brain barrier; Engineered bacterial membranes; Glioma; Inflammation; Neutrophils
    DOI:  https://doi.org/10.12182/20240760203
  10. Front Pharmacol. 2024 ;15 1442700
      In recent years, natural products have gradually become an important source for new drug development due to their advantages of multi-components, multi-targets, and good safety profiles. Psoralen, a furanocoumarin compound extracted from the traditional Chinese medicine psoralea corylifolia, is widely distributed among various plants. It has attracted widespread attention in the research community due to its pharmacological activities, including antitumor, anti-inflammatory, antioxidant, and neuroprotective effects. Studies have shown that psoralen has broad spectrum anti-tumor activities, offering resistance to malignant tumors such as breast cancer, liver cancer, glioma, and osteosarcoma, making it a natural, novel potential antitumor drug. Psoralen mainly exerts its antitumor effects by inhibiting tumor cell proliferation, inducing apoptosis, inhibiting tumor cell migration, and reversing multidrug resistance, presenting a wide application prospect in the field of antitumor therapy. With the deepening research on psoralea corylifolia, its safety has attracted attention, and reports on the hepatotoxicity of psoralen have gradually increased. Therefore, this article reviews recent studies on the mechanism of antitumor effects of psoralen and focuses on the molecular mechanisms of its hepatotoxicity, providing insights for the clinical development of low-toxicity, high-efficiency antitumor drugs and the safety of clinical medication.
    Keywords:  apoptosis; hepatotoxicity; molecular mechanism; natural products; psoralen; tumor
    DOI:  https://doi.org/10.3389/fphar.2024.1442700