Mol Cell Endocrinol. 2025 Sep 16. pii: S0303-7207(25)00211-4. [Epub ahead of print] 112660
BACKGROUND: Atherosclerosis (AS) is a chronic vascular disease, and perivascular adipose tissue dysfunction is an important cause of the arterial plaque formation involved. However, the underlying mechanism has not been fully elucidated. The aim of this study was to investigate the mechanism of oxidized low-density lipoprotein (ox-LDL) stimulation of macrophage-derived exosomes in the development of AS.
METHODS: We isolated exosomes from ox-LDL-treated macrophages and injected them into Western diet-fed ApoE-/- mice. We assessed AS, lipid metabolism, and endothelial function by histology, ELISA, qPCR, and western blotting, and examined BMP7 and OPA1 regulation in brown fat and vascular endothelium.
RESULTS: Macrophage-derived exosomes were extracted, and their size was determined by transmission electron microscopy. Additionally, CD9, CD63, and TSG101 protein expression within these macrophages was determined. Compared with the control group, the exosomes group showed increased expression of AP2 and PPAR and decreased expression of UCP-1, PGC-1α, and BMP7. Furthermore, when BMP7 was knocked down, the expression of the lipid metabolites FASN, SCD1, HSL, and ATGL as well as of OPA1 decreased. In an ApoE-/- mouse model, compared to the control group, increased arterial plaques and plaque lesion formation were observed in the exosome group, along with elevated expression of the lipid metrics TC, TG, LDL-C, and HDL-C and significant increases in the expression of the proinflammatory factors VCAM1, ICAM1, MCP-1, and IL-6. Consequently the progression of AS was aggravated in this group.
CONCLUSIONS: This study demonstrated that ox-LDL stimulated exosome secretion from macrophages, accelerating the AS process. It also showed that, mechanistically, BMP7 regulates the expression of OPA1 and affects the normal lipid metabolism, thereby accelerating AS.
Keywords: BMP7; OPA1; atherosclerosis; exosomes; perivascular adipose tissue