bims-ershed Biomed News
on ER Stress in Health and Diseases
Issue of 2021‒04‒18
eleven papers selected by
Matías Eduardo González Quiroz
Worker’s Hospital


  1. FASEB J. 2021 May;35(5): e21569
      Aberrant accumulation of amyloid-β (Aβ) in brain is the major trigger for pathogenesis in Alzheimer's disease (AD). It is imperative to understand how Aβ attains such toxic levels in the brain parenchyma. We detected that a subtle and tolerable amount of DNA damage, related to aging, increased intraneuronal Aβ1-42 production both in cultured neuron and in cortex of rodent brain. Strikingly, we also observed elevated levels of mitochondrial fusion and of its major driver protein, MFN2. Hyperfusion of mitochondria may be seen as an adaptive stress response resulting from the induction of ER stress since we detected the activation of both PERK and IRE1α arms of unfolded protein response of ER stress. We found increased phosphorylation of PERK substrate eukaryotic initiation factor 2 α (eIF2α), and upregulation of the downstream effector proteins, ATF4 and CHOP. Concomitantly, increased XBP1 level, the direct effecter protein of IRE-1α, was observed. Reports suggest that eIF2α phosphorylation can increase BACE1 activity, the rate limiting enzyme in Aβ production. Here, we show that inhibiting PERK, decreased Aβ1-42 level while direct BACE1 inhibition, reduced the mitochondrial fusion. We found increased MFN2 expression in young 5xFAD mice when Aβ plaques and neurodegeneration were absent. Thus, our study indicates that mild DNA damage leads to increased Aβ1-42 production almost as a consequence of an initial ER stress-directed protective mitochondrial fusion in brain. We propose that an age-related subtle genomic DNA damage may trigger enhanced intraneuronal Aβ1-42 production in an apparently healthy neuron way before the appearance of clinical symptoms in AD.
    Keywords:  5xFAD; BACE1; DNA damage; MFN2; PERK; amyloid-β; eIF2α
    DOI:  https://doi.org/10.1096/fj.202001676RR
  2. Plant Cell Environ. 2021 Apr 10.
      The Unfolded Protein Response (UPR) in plants is elicited by endoplasmic reticulum stress which can be brought about by adverse environmental conditions. The response is mediated by a conserved signaling network composed of two branches - one branch involving INOSITOL REQUIRING ENZYME1- BASIC LEUCINE ZIPPER60 (IRE1-bZIP60) signaling pathway and another branch involving the membrane transcription factors, bZIP17 and - 28. The UPR has been reported in Chlamydomonas reinhardtii, a unicellular green alga, which lacks some canonical UPR signaling components found in vascular plants, raising the question whether C. reinhardtii uses other means such as oxidative signaling or Regulated IRE1-Dependent Decay to activate the UPR. In vascular plants IRE1 splices bZIP60 mRNA in response to endoplasmic reticulum stress by cutting at a site in the RNA that is highly conserved in structure and sequence. Monocots have a single IRE1 gene required for viability in rice, while dicots have two IRE1 genes, IRE1a and -b. Brassicas have a third IRE1 gene, IRE1c, which lacks a lumenal domain, but is required in combination with IRE1b for gametogenesis. Vascular and non-vascular plants upregulate a similar set of genes in response to endoplasmic reticulum stress despite differences in the complexity of their UPR signaling networks. This article is protected by copyright. All rights reserved.
    Keywords:  INOSITOL REQUIRING ENZYME (IRE1); Regulated IRE1-Dependent Decay (RIDD); Regulated Intradomain Proteolysis (RIP); endoplasmic reticulum membrane-associated transcription factors; endoplasmic reticulum stress; membrane-associated protein endoplasmic reticulum kinase (PERK)
    DOI:  https://doi.org/10.1111/pce.14063
  3. Cancer Res. 2021 Apr 16. pii: canres.2694.2020. [Epub ahead of print]
      Schlafen11 (SLFN11) inactivation occurs in approximately 50% of cancer cell lines and in a large fraction of patient tumor samples, which leads to chemoresistance. Therefore, new therapeutic approaches are needed to target SLFN11-deficient cancers. To that effect, we conducted a drug screen with the NCATS mechanistic drug library of 1978 compounds in isogenic SLFN11-knockout (KO) and wild-type (WT) leukemia cell lines. Here we report that TAK-243, a first-in-class ubiquitin activating enzyme UBA1 inhibitor in clinical development, causes preferential cytotoxicity in SLFN11-KO cells; this effect is associated with claspin-mediated DNA replication inhibition by CHK1 independently of ATR. Additional analyses showed that SLFN11-KO cells exhibit consistently enhanced global protein ubiquitylation, endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and protein aggregation. TAK-243 suppressed global protein ubiquitylation and activated the UPR transducers PERK, phosphorylated eIF2alpha, phosphorylated IRE1, and ATF6 more effectively in SLFN11-KO cells than WT cells. Proteomic analysis using biotinylated mass spectrometry and RNAi screening also showed physical and functional interactions of SLFN11 with translation initiation complexes and protein folding machinery. These findings uncover a previously unknown function of SLFN11 as a regulator of protein quality control and attenuator of ER stress and UPR. Moreover, they suggest the potential value of TAK-243 in SLFN11-deficient tumors.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-2694
  4. Biochim Biophys Acta Mol Cell Res. 2021 Apr 12. pii: S0167-4889(21)00093-8. [Epub ahead of print] 119039
      Although a high cumulative dose of Doxorubicin (Dox) is known to cause cardiotoxicity, there is still a lack of understanding of the subcellular basis of this drug-induced cardiomyopathy. Differential effects of Dox on mitochondria and endoplasmic reticulum (ER) were examined in cardiomyocytes, tumor cells, implanted tumors and hearts of normal as well as tumor-bearing animals. Dox increased mitochondrial (Mito) Bax activation at 3h in the cardiomyocyte without change in the DNA damage inducible transcriptor-3 (DDIT3) expression in the ER. Increased DDIT3 in these Dox-treated cardiomyocytes at 24h suggested that increased MitoBax may have promoted ER stress related changes in DDIT3. Dissociation of immunoglobulin-binding protein (Bip) from activating transcription factor 6 (ATF6)-Bip complex in the ER was observed as an adaptive response to Dox. In contrast, breast cancer MCF7 cells showed an ER stress response to Dox with increased DDIT3 as early as 3h which may have triggered a positive feedback activation of ATF6 at 12 and 24h and promoted Calnexin. At these later time points, increased Bax activation in cancer cells suggested that MitoBax may be controlled by DDIT3 or by Calnexin. DDIT3 response in tumors was evoked by Dox, however this response was inversely correlated with increased Bip and Bax expression in hearts from tumor bearing animals. It is suggested that in Dox-induced cardiotoxicity both mitochondrial and ER stresses play an integral role through a mutual interaction where an inhibition of DDIT3 or Calnexin may also be crucial to achieve Dox resistance in cardiomyocytes.
    Keywords:  Activating Transcription factor 6; Apoptosis; DNA damage inducible transcriptor-3; Dox-induced cardiomyopathy; Immunoglobulin binding protein; Mitochondrial Bax
    DOI:  https://doi.org/10.1016/j.bbamcr.2021.119039
  5. Front Cell Dev Biol. 2021 ;9 641194
      In the last decades, the endoplasmic reticulum (ER) has emerged as a key coordinator of cellular homeostasis, thanks to its physical interconnection to almost all intracellular organelles. In particular, an intense and mutual crosstalk between the ER and mitochondria occurs at the mitochondria-ER contacts (MERCs). MERCs ensure a fine-tuned regulation of fundamental cellular processes, involving cell fate decision, mitochondria dynamics, metabolism, and proteostasis, which plays a pivotal role in the tumorigenesis and therapeutic response of cancer cells. Intriguingly, recent studies have shown that different components of the unfolded protein response (UPR) machinery, including PERK, IRE1α, and ER chaperones, localize at MERCs. These proteins appear to exhibit multifaceted roles that expand beyond protein folding and UPR transduction and are often related to the control of calcium fluxes to the mitochondria, thus acquiring relevance to cell survival and death. In this review, we highlight the novel functions played by PERK, IRE1α, and ER chaperones at MERCs focusing on their impact on tumor development.
    Keywords:  cancer; endoplasmic reticulum; mitochondria–ER contacts; molecular chaperones; unfolded protein response
    DOI:  https://doi.org/10.3389/fcell.2021.641194
  6. Emerg Top Life Sci. 2021 Apr 15. pii: ETLS20200337. [Epub ahead of print]
      Genes are expressed to proteins for a wide variety of fundamental biological processes at the cellular and organismal levels. However, a protein rarely functions alone, but rather acts through interactions with other proteins to maintain normal cellular and organismal functions. Therefore, it is important to analyze the protein-protein interactions to determine functional mechanisms of proteins, which can also guide to develop therapeutic targets for treatment of diseases caused by altered protein-protein interactions leading to cellular/organismal dysfunctions. There is a large number of methodologies to study protein interactions in vitro, in vivo and in silico, which led to the development of many protein interaction databases, and thus, have enriched our knowledge about protein-protein interactions and functions. However, many of these interactions were identified in vitro, but need to be verified/validated in living cells. Furthermore, it is unclear whether these interactions are direct or mediated via other proteins. Moreover, these interactions are representative of cell- and time-average, but not a single cell in real time. Therefore, it is crucial to detect direct protein-protein interactions in a single cell during biological processes in vivo, towards understanding the functional mechanisms of proteins in living cells. Importantly, a fluorescence resonance energy transfer (FRET)-based methodology has emerged as a powerful technique to decipher direct protein-protein interactions at a single cell resolution in living cells, which is briefly described in a limited available space in this mini-review.
    Keywords:  ECFP; EYFP; FRET; fluorescence; protein–protein interactions
    DOI:  https://doi.org/10.1042/ETLS20200337
  7. Front Mol Biosci. 2021 ;8 650730
      The proteolytic machinery activity diminishes with age, leading to abnormal accumulation of aberrant proteins; furthermore, a decline in protein degradation capacity is associated with multiple age-related proteinopathies. Cellular proteostasis can be maintained via the removal of ubiquitin (Ub)-tagged damaged and redundant proteins by the ubiquitin-proteasome system (UPS). However, during aging, central nervous system (CNS) cells begin to express a frameshift-mutated Ub, UBB+1. Its accumulation is a neuropathological hallmark of tauopathy, including Alzheimer's disease and polyglutamine diseases. Mechanistically, in cell-free and cell-based systems, an increase in the UBB+1 concentration disrupts proteasome processivity, leading to increased aggregation of toxic proteins. On the other hand, a low level of UBB+1 improves stress resistance and extends lifespan. Here we summarize recent findings regarding the impact of UBB+1 on Ub signaling and neurodegeneration. We also review the molecular basis of how UBB+1 affects UPS components as well as its dose-dependent switch between cytoprotective and cytotoxic roles.
    Keywords:  ROS generation and cytotoxicity; UBB+1; cellular viability; molecular misreading; neurodegeneration; proteotoxic stress response; ubiquitin proteasomal system
    DOI:  https://doi.org/10.3389/fmolb.2021.650730
  8. STAR Protoc. 2021 Jun 18. 2(2): 100407
      hTERT-RPE1 cells are genetically stable near diploid cells widely used to model cell division, DNA repair, or ciliogenesis in a non-transformed context. However, poor transfectability and limited homology-directed repair capacity hamper their amenability to gene editing. Here, we describe a protocol for rapid and efficient generation of diverse homozygous knockins. In contrast to other approaches, this strategy bypasses the need for molecular cloning. Our approach can also be applied to a variety of cell types including cancer and induced pluripotent stem cells (iPSCs).
    Keywords:  CRISPR; Cell Biology
    DOI:  https://doi.org/10.1016/j.xpro.2021.100407
  9. Adv Cancer Res. 2021 ;pii: S0065-230X(21)00001-4. [Epub ahead of print]150 285-334
      Senescence is a cellular state which can be viewed as a stress response phenotype implicated in various physiological and pathological processes, including cancer. Therefore, it is of fundamental importance to understand why and how a cell acquires and maintains a senescent phenotype. Direct evidence has pointed to the homeostasis of the endoplasmic reticulum whose control appears strikingly affected during senescence. The endoplasmic reticulum is one of the sensing organelles that transduce signals between different pathways in order to adapt a functional proteome upon intrinsic or extrinsic challenges. One of these signaling pathways is the Unfolded Protein Response (UPR), which has been shown to be activated during senescence. Its exact contribution to senescence onset, maintenance, and escape, however, is still poorly understood. In this article, we review the mechanisms through which the UPR contributes to the appearance and maintenance of characteristic senescent features. We also discuss whether the perturbation of the endoplasmic reticulum proteostasis or accumulation of misfolded proteins could be possible causes of senescence, and-as a consequence-to what extent the UPR components could be considered as therapeutic targets allowing for the elimination of senescent cells or altering their secretome to prevent neoplastic transformation.
    Keywords:  Aging; Endoplasmic reticulum; Homeostasis; Secretome; Senescence; Unfolded protein response
    DOI:  https://doi.org/10.1016/bs.acr.2021.01.001
  10. Mol Cell Oncol. 2021 ;8(2): 1875804
      The glycolytic enzyme PGAM1 is overexpressed in gliomas where it efficiently facilitates the repair of DNA damage. Mechanistically, PGAM1 prevents inactivation of the ataxia-telangiectasia mutated (ATM) signaling pathway by sequestering the wild-type p53-induced phosphatase 1 (WIP1) in the cytoplasm. Genetic inhibition of PGAM1 expression subsequently sensitizes glioma cells against irradiation and chemotherapy-induced DNA damage.
    Keywords:  DNA damage repair; Glioma; IR; PGAM1; TMZ; WIP1; treatment resistance
    DOI:  https://doi.org/10.1080/23723556.2021.1875804
  11. Front Med (Lausanne). 2021 ;8 644154
      Drug-related Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are rare but severe adverse drug reactions, termed as idiosyncratic reactions; however, predicting their onset remains challenging. Pharmacogenomic information associated with SJS/TEN has accumulated on several drugs in the last 15 years, with clinically useful information now included on drug labels in several countries/regions or guidelines of the Clinical Pharmacogenetics Implementation Consortium (CPIC) for implementation. However, label information might be different among countries. This mini-review summarizes pharmacogenomic information on drug labels of five drugs in six countries and compared descriptions of drug labels and CPIC guidelines. Finally, we discuss future perspectives of this issue. Pharmacogenomic information on drug labels is not well-harmonized across countries/regions, but CPIC guidelines are a scientifically sound goal for future pharmacogenomic implementation.
    Keywords:  Stevens-Johnson syndrome; drug label; guideline; implementation; pharmacogenomics; toxic epidermal necrolysis
    DOI:  https://doi.org/10.3389/fmed.2021.644154