bims-ershed Biomed News
on ER Stress in Health and Diseases
Issue of 2021‒12‒12
five papers selected by
Matías Eduardo González Quiroz
Worker’s Hospital


  1. Front Plant Sci. 2021 ;12 755447
      The endoplasmic reticulum (ER) is the organelle where one third of the proteins of a cell are synthetized. Several of these proteins participate in the signaling and response of cells, tissues, or from the organism to the environment. To secure the proper synthesis and folding of these proteins, or the disposal of unfolded or misfolded proteins, the ER has different mechanisms that interact and regulate each other. These mechanisms are known as the ER quality control (ERQC), ER-associated degradation (ERAD) and the unfolded protein response (UPR), all three participants of the maintenance of ER protein homeostasis or proteostasis. Given the importance of the client proteins of these ER mechanisms in the plant response to the environment, it is expected that changes or alterations on their components have an impact on the plant response to environmental cues or stresses. In this mini review, we focus on the impact of the alteration of components of ERQC, ERAD and UPR in the plant response to abiotic stresses such as drought, heat, osmotic, salt and irradiation. Also, we summarize findings from recent publications looking for a connection between these processes and their possible client(s) proteins. From this, we observed that a clear connection has been established between the ERAD and UPR mechanisms, but evidence that connects ERQC components to these both processes or their possible client(s) proteins is still lacking. As a proposal, we suggest the use of proteomics approaches to uncover the identity of these proteins and their connection with ER proteostasis.
    Keywords:  abiotic stress; chaperone; endoplasmic reticulum associated degradation (ERAD); endoplasmic reticulum quality control (ERQC); unfolded protein response (UPR)
    DOI:  https://doi.org/10.3389/fpls.2021.755447
  2. PLoS Genet. 2021 Dec 06. 17(12): e1009958
      Cell competition is a context-dependent cell elimination via cell-cell interaction whereby unfit cells ('losers') are eliminated from the tissue when confronted with fitter cells ('winners'). Despite extensive studies, the mechanism that drives loser's death and its physiological triggers remained elusive. Here, through a genetic screen in Drosophila, we find that endoplasmic reticulum (ER) stress causes cell competition. Mechanistically, ER stress upregulates the bZIP transcription factor Xrp1, which promotes phosphorylation of the eukaryotic translation initiation factor eIF2α via the kinase PERK, leading to cell elimination. Surprisingly, our genetic data show that different cell competition triggers such as ribosomal protein mutations or RNA helicase Hel25E mutations converge on upregulation of Xrp1, which leads to phosphorylation of eIF2α and thus causes reduction in global protein synthesis and apoptosis when confronted with wild-type cells. These findings not only uncover a core pathway of cell competition but also open the way to understanding the physiological triggers of cell competition.
    DOI:  https://doi.org/10.1371/journal.pgen.1009958
  3. Front Cell Dev Biol. 2021 ;9 775312
      Apart from mutations in the p53 gene, p53 functions can be alternatively compromised by a decrease in nuclear p53 protein levels or activities. In accordance, enhanced p53 protein turnover due to elevated expression of the critical p53 E3 ligase MDM2 or MDM2/MDMX is found in many human cancers. Likewise, the HPV viral E6 protein-mediated p53 degradation critically contributes to the tumorigenesis of cervical cancer. In addition, growth-promoting signaling-induced cell proliferation is accompanied by p53 downregulation. Animal studies have also shown that loss of p53 is essential for oncogenes to drive malignant transformation. The close association between p53 downregulation and carcinogenesis implicates a critical role of basally expressed p53. In accordance, available evidence indicates that a reduced level of basal p53 is usually associated with disruption of homeostasis, suggesting a homeostatic function mediated by basal p53. However, basally expressed p53 under non-stress conditions is maintained at a relatively low abundance with little transcriptional activity, raising the question of how basal p53 could protect homeostasis. In this review, we summarize the findings pertinent to basal p53-mediated activities in the hope of developing a model in which basally expressed p53 functions as a barrier to anabolic metabolism to preserve homeostasis. Future investigation is necessary to characterize basal p53 functionally and to obtain an improved understanding of p53 homeostatic function, which would offer novel insight into the role of p53 in tumor suppression.
    Keywords:  basal p53; homeostasis; metabolism; p53-mediated barrier; tumor suppression
    DOI:  https://doi.org/10.3389/fcell.2021.775312
  4. NPJ Syst Biol Appl. 2021 Dec 09. 7(1): 46
      Different cancer cell lines can have varying responses to the same perturbations or stressful conditions. Cancer cells that have DNA damage checkpoint-related mutations are often more sensitive to gene perturbations including altered Plk1 and p53 activities than cancer cells without these mutations. The perturbations often induce a cell cycle arrest in the former cancer, whereas they only delay the cell cycle progression in the latter cancer. To study crosstalk between Plk1, p53, and G2/M DNA damage checkpoint leading to differential cell cycle regulations, we developed a computational model by extending our recently developed model of mitotic cell cycle and including these key interactions. We have used the model to analyze the cancer cell cycle progression under various gene perturbations including Plk1-depletion conditions. We also analyzed mutations and perturbations in approximately 1800 different cell lines available in the Cancer Dependency Map and grouped lines by genes that are represented in our model. Our model successfully explained phenotypes of various cancer cell lines under different gene perturbations. Several sensitivity analysis approaches were used to identify the range of key parameter values that lead to the cell cycle arrest in cancer cells. Our resulting model can be used to predict the effect of potential treatments targeting key mitotic and DNA damage checkpoint regulators on cell cycle progression of different types of cancer cells.
    DOI:  https://doi.org/10.1038/s41540-021-00203-8
  5. Biochem Biophys Res Commun. 2021 Nov 30. pii: S0006-291X(21)01618-1. [Epub ahead of print]587 58-62
      Advancements in brain imaging techniques have emerged as a significant tool in detecting Alzheimer's disease (AD) progression. The complicated cascade of AD progression can be detected using radio imaging, especially with Positron emission tomography (PET). The review focus on recently introduced investigational PET tracers targeting neurofibrillary tau aggregates found typically in AD. Herein, we also address the use of different PET tracers and the clinical implementation of established and newer generation tracers. This review also intends to discuss the importance of several PET radiotracers and challenges in PET imaging.
    Keywords:  Alzheimer's disease; Diagnosis; Neural circuits; Radiotracers; Tau aggregates
    DOI:  https://doi.org/10.1016/j.bbrc.2021.11.093