bims-exocan Biomed News
on Exosomes roles in cancer
Issue of 2023‒06‒11
four papers selected by
Muhammad Rizwan
COMSATS University


  1. Int Immunopharmacol. 2023 Jun 03. pii: S1567-5769(23)00589-1. [Epub ahead of print]120 110267
      Myeloid-derived suppressor cells (MDSCs) are considered a heterogeneous group of immature myeloid cells engaging in aggressive tumor progression and metastasis in the tumor microenvironment (TME) of patients diagnosed with cancer, through downregulation of anti-tumor immune responses. Exosomes are small vesicles carrying specific cargos, including proteins, lipids, and MicroRNA (miRNAs). Such exosomal miRNAs delivered by MDSCs and tumor cells are short noncoding RNAs mediating some of the immunosuppressive characteristics of MDSCs in the TME. However, when it comes to cancer diseases, how these miRNAs interact with MDSCs and encourage MDSCs differentiation and function need further investigations. In this review, we discuss MDSC-derived exosomal miRNAs and those derived from tumor cells (TDE) could modulate anti-tumor immunity and regulate the interaction between tumor cells and MDSCs in the TME. Afterward, we focus on dividing miRNAs, as an important substance interacting with MDSCs and tumor cells in the TME, into those have an immunosuppressive or stimulating effect not only on MDSCs expansion, differentiation, and suppressive function but also on tumor evasion.
    Keywords:  Exosomes; Immunosuppressive function; MicroRNA; Myeloid-derived suppressor cells; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.intimp.2023.110267
  2. Front Oncol. 2023 ;13 1149551
      Pancreatic cancer (PC) is one of the most dangerous diseases that threaten human life, and investigating the details affecting its progression or regression is particularly important. Exosomes are one of the derivatives produced from different cells, including tumor cells and other cells such as Tregs, M2 macrophages, and MDSCs, and can help tumor growth. These exosomes perform their actions by affecting the cells in the tumor microenvironment, such as pancreatic stellate cells (PSCs) that produce extracellular matrix (ECM) components and immune cells that are responsible for killing tumor cells. It has also been shown that pancreatic cancer cell (PCC)-derived exosomes at different stages carry molecules. Checking the presence of these molecules in the blood and other body fluids can help us in the early stage diagnosis and monitoring of PC. However, immune system cell-derived exosomes (IEXs) and mesenchymal stem cell (MSC)-derived exosomes can contribute to PC treatment. Immune cells produce exosomes as part of the mechanisms involved in the immune surveillance and tumor cell-killing phenomenon. Exosomes can be modified in such a way that their antitumor properties are enhanced. One of these methods is drug loading in exosomes, which can significantly increase the effectiveness of chemotherapy drugs. In general, exosomes form a complex intercellular communication network that plays a role in developing, progressing, diagnosing, monitoring, and treating pancreatic cancer.
    Keywords:  diagnosis; exosome; miRNA; pancreatic cancer; prognosis; treatment; tumor
    DOI:  https://doi.org/10.3389/fonc.2023.1149551
  3. J Pathol. 2023 Jun 09.
      Extracellular vesicles (EVs) are lipid bilayer-enclosed subcellular bodies produced by most, if not all cells. Research over the last two decades has recognised the importance of EVs in intercellular communication and horizontal transfer of biological material. EVs range in diameter from tens of nanometres up to several micrometres and are able to transfer a spectrum of biologically active cargoes - from whole organelles, through macromolecules including nucleic acids and proteins, to metabolites and small molecules - from their cells of origin to recipient cells, which may consequently become physiologically or pathologically altered. Based on their modes of biogenesis, the most renowned EV classes are (1) microvesicles, (2) exosomes (both produced by healthy cells), and (3) EVs from cells undergoing regulated death by apoptosis (ApoEVs). Microvesicles bud directly from the plasma membrane, while exosomes are derived from endosomal compartments. Current knowledge of the formation and functional properties of ApoEVs lags behind that of microvesicles and exosomes, but burgeoning evidence indicates that ApoEVs carry manifold cargoes, including mitochondria, ribosomes, DNA, RNAs, and proteins, and perform diverse functions in health and disease. Here we review this evidence, which demonstrates substantial diversity in the luminal and surface membrane cargoes of ApoEVs, permitted by their very broad size range (from around 50 nm to >5 μm; the larger often termed apoptotic bodies), strongly suggests their origins through both microvesicle- and exosome-like biogenesis pathways, and indicates routes through which they interact with recipient cells. We discuss the capacity of ApoEVs to recycle cargoes and modulate inflammatory, immunological, and cell fate programmes in normal physiology and in pathological scenarios such as cancer and atherosclerosis. Finally, we provide a perspective on clinical applications of ApoEVs in diagnostics and therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
    DOI:  https://doi.org/10.1002/path.6138
  4. World J Gastrointest Oncol. 2023 May 15. 15(5): 731-756
      Colorectal cancer (CRC), the third most common type of cancer worldwide, threaten human health and quality of life. With multidisciplinary, including surgery, chemotherapy and/or radiotherapy, patients with an early diagnosis of CRC can have a good prognosis. However, metastasis in CRC patients is the main risk factor causing cancer-related death. To elucidate the underlying molecular mechanisms of CRC metastasis is the difficult and research focus on the investigation of the CRC mechanism. On the other hand, the tumor microenvironment (TME) has been confirmed as having an essential role in the tumorigenesis and metastasis of malignancies, including CRCs. Among the different factors in the TME, exosomes as extracellular vesicles, function as bridges in the communication between cancer cells and different components of the TME to promote the progression and metastasis of CRC. MicroRNAs packaged in exosomes can be derived from different sources and transported into the TME to perform oncogenic or tumor-suppressor roles accordingly. This article focuses on CRC exosomes and illustrates their role in regulating the metastasis of CRC, especially through the packaging of miRNAs, to evoke exosomes as novel biomarkers for their impact on the metastasis of CRC progression.
    Keywords:  Biomarker; Colorectal cancer; Exosome; Metastasis; miRNA
    DOI:  https://doi.org/10.4251/wjgo.v15.i5.731