bims-exocan Biomed News
on Exosomes roles in cancer
Issue of 2024–07–07
five papers selected by
Muhammad Rizwan, COMSATS University



  1. J Cancer. 2024 ;15(13): 4128-4142
      Bone cancer among adolescents and children exhibits varying survival outcomes based on disease state. While localized bone cancer cases have a survival rate exceeding 70%, metastatic, refractory, and recurrent forms are associated with significantly poorer prognoses. Initially believed to be mere vehicles for cellular waste disposal, exosomes are now recognized as extracellular vesicles facilitating intercellular communication. These vesicles influence cellular behaviors by transporting various biomolecules, such as proteins, DNA, RNA, and lipids, among cells. The role of exosomes in regulating the progression of bone cancer is increasingly evident, impacting critical processes like tumorigenesis, proliferation, metastasis, angiogenesis, immune evasion, and drug resistance. Current research underscores the substantial potential of exosomes in promoting the progression and development of bone cancer. This review delves into the complex process of exosome biogenesis, the variety of cell-derived exosome sources, and their applications in drug delivery and therapeutics. It also examines ongoing clinical trials focused on exosome cargo levels and discusses the challenges and future directions in exosome research. Unlike costly and invasive traditional diagnostic methods, exosomal biomarkers offer a non-invasive, cost-effective, and readily accessible routine screening through simple fluid collection that aims to inspire researchers to investigate the potential of exosomes for cancer theragnostic. Through comprehensive exploration of these areas, the review seeks to enhance understanding and foster innovative solutions to cancer biology in the near future.
    Keywords:  Biomarkers; Bone cancer; Exosomes; Extracellular vesicles; Liquid biopsy; Precision medicine; Tumor microenvironment
    DOI:  https://doi.org/10.7150/jca.95709
  2. Front Oncol. 2024 ;14 1414063
      Exosomes are a subclass of extracellular vesicles shown to promote the cancer growth and support metastatic progression. The proteomic analysis of neuroblastoma-derived exosomes has revealed proteins involved in cell migration, proliferation, metastasis, and in the modulation of tumor microenvironment - thus contributing to the tumor development and an aggressive metastatic phenotype. This review gives an overview of the current understanding of the exosomal proteins in neuroblastoma and of their potential as diagnostic/prognostic biomarker of disease and therapeutics.
    Keywords:  biomarkers; exosomal proteins; exosomes; metastatic progression; neuroblastoma-derived exosomes; proteomic analysis; tumor microenvironment
    DOI:  https://doi.org/10.3389/fonc.2024.1414063
  3. Mol Cancer. 2024 Jun 29. 23(1): 134
      Natural killer (NK) cells are important immune cells in the organism and are the third major type of lymphocytes besides T cells and B cells, which play an important function in cancer therapy. In addition to retaining the tumor cell killing function of natural killer cells, natural killer cell-derived exosomes cells also have the characteristics of high safety, wide source, easy to preserve and transport. At the same time, natural killer cell-derived exosomes are easy to modify, and the engineered exosomes can be used in combination with a variety of current cancer therapies, which not only enhances the therapeutic efficacy, but also significantly reduces the side effects. Therefore, this review summarizes the source, isolation and modification strategies of natural killer cell-derived exosomes and the combined application of natural killer cell-derived engineered exosomes with other antitumor therapies, which is expected to accelerate the clinical translation process of natural killer cell-derived engineered exosomes in cancer therapy.
    Keywords:  Cancer therapy; Clinical translation; Modification; Natural killer cell-derived exosomes; Natural killer cells
    DOI:  https://doi.org/10.1186/s12943-024-02045-4
  4. Discov Oncol. 2024 Jul 02. 15(1): 253
      Exosomes play a crucial role in the progression and spread of pancreatic cancer, serving not only as promoters of tumor growth and organ-specific metastasis but also as promising biomarkers and targets for treatment. These nano vesicles enhance intercellular communication by transferring bioactive molecules, such as proteins and RNAs, between cells. This process significantly affects cancer cell dynamics, including their proliferation, migration, and invasion, while also contributing to drug resistance. Our review focuses on the crucial interactions between cancer cells and fibroblasts mediated by exosomes within the pancreatic cancer microenvironment. We delve into how exosomes from both cancer-associated fibroblasts and the cancer cells themselves drive tumor progression through various mechanisms, such as epithelial-mesenchymal transition and facilitating metastasis to specific organs like the lungs and liver. The potential of leveraging exosomes for therapeutic interventions is also explored, highlighting the importance of understanding their role in cell communication as a step forward in developing more effective pancreatic cancer treatments.
    DOI:  https://doi.org/10.1007/s12672-024-01111-z
  5. Heliyon. 2024 Jun 30. 10(12): e32875
       Background: Renal Cell Carcinoma (RCC) stands as a formidable challenge within the field of oncology, despite considerable research endeavors. The advanced stages of this malignancy present formidable barriers to effective treatment and management.
    Objective: This review aims to explore the potential of exosomes in addressing the diagnostic and therapeutic challenges associated with RCC. Specifically, it investigates the role of exosomes as biomarkers and therapeutic vehicles in the context of RCC management.
    Methods: For this review article, a comprehensive literature search was conducted using databases such as PubMed, employing relevant keywords to identify research articles pertinent to the objectives of the review. Initially, 200 articles were identified, which underwent screening to remove duplicates and assess relevance based on titles and abstracts, followed by a detailed examination of full texts. From the selected articles, relevant data were extracted and synthesized to address the review's objectives. The conclusions were drawn based on a thorough analysis of the findings. The quality was ensured through independent review and resolution of discrepancies among multiple reviewers.
    Results: Exosomes demonstrate potential as diagnostic tools for early detection, prognosis, and treatment monitoring in RCC. Their ability to deliver various therapeutic agents, such as small interfering RNAs, lncRNAs, chemotherapeutic drugs, and immune-stimulating agents, allows for a personalized approach to RCC management. By leveraging exosome-based technologies, precision and efficacy in treatment strategies can be significantly enhanced.
    Conclusion: Despite the promising advancements enabled by exosomes in the management of RCC, further research is necessary to refine exosome-based technologies and validate their efficacy, safety, and long-term benefits through rigorous clinical trials. Embracing exosomes as integral components of RCC diagnosis and treatment represents a significant step towards improving patient outcomes and addressing the persistent challenges posed by this malignancy in the field of oncology.
    Keywords:  Biomarkers; Exosomes; Liquid biopsies; microRNA; renal cell carcinoma
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e32875