bims-fascar Biomed News
on Phase separation and cellular architecture
Issue of 2021‒03‒14
two papers selected by
Victoria Yan
Max Planck Institute of Molecular Cell Biology and Genetics


  1. Annu Rev Plant Biol. 2021 Mar 08.
      A surge in research focused on understanding the physical principles governing the formation, properties, and function of membraneless compartments has occurred over the past decade. Compartments such as the nucleolus, stress granules, and nuclear speckles have been designated as biomolecular condensates to describe their shared property of spatially concentrating biomolecules. Although this research has historically been carried out in animal and fungal systems, recent work has begun to explore whether these same principles are relevant in plants. Effectively understanding and studying biomolecular condensates require interdisciplinary expertise that spans cell biology, biochemistry, and condensed matter physics and biophysics. As such, some involved concepts may be unfamiliar to any given individual. This review focuses on introducing concepts essential to the study of biomolecular condensates and phase separation for biologists seeking to carry out research in this area and further examines aspects of biomolecular condensates that are relevant to plant systems. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    DOI:  https://doi.org/10.1146/annurev-arplant-081720-015238
  2. Elife. 2021 Mar 11. pii: e62403. [Epub ahead of print]10
      Cells possess a multiplicity of non-membrane-bound compartments, which form via liquid-liquid phase separation. These condensates assemble and dissolve as needed to enable central cellular functions. One important class of condensates is those composed of two associating polymer species that form one-to-one specific bonds. What are the physical principles that underlie phase separation in such systems? To address this question, we employed coarse-grained molecular dynamics simulations to examine how the phase boundaries depend on polymer valence, stoichiometry, and binding strength. We discovered a striking phenomenon - for sufficiently strong binding, phase separation is suppressed at rational polymer stoichiometries, which we termed the magic-ratio effect. We further developed an analytical dimer-gel theory that confirmed the magic-ratio effect and disentangled the individual roles of polymer properties in shaping the phase diagram. Our work provides new insights into the factors controlling the phase diagrams of biomolecular condensates, with implications for natural and synthetic systems.
    Keywords:  associative polymers; biomolecular condensates; molecular dynamics simulations; none; phase separation; physics of living systems
    DOI:  https://doi.org/10.7554/eLife.62403