bims-flamet Biomed News
on Cytokines and immunometabolism in metastasis
Issue of 2023‒08‒06
28 papers selected by
Peio Azcoaga
Biodonostia HRI


  1. DNA Cell Biol. 2023 Aug 03.
      In the tumor microenvironment, tumor-associated macrophages (TAMs) are one of the most abundant cell populations, playing key roles in tumorigenesis, chemoresistance, immune evasion, and metastasis. There is an important interaction between TAMs and cancer cells: on the one hand, tumors control the function of infiltrating macrophages, contributing to reprogramming of TAMs, and on the other hand, TAMs affect the growth of cancer cells. This review focuses on lipid metabolism changes in the complex relationship between cancer cells and TAMs. We discuss how lipid metabolism in cancer cells affects macrophage phenotypic and metabolic changes and, subsequently, how altered lipid metabolism of TAMs influences tumor progression. Identifying the metabolic changes that influence the complex interaction between tumor cells and TAMs is also an important step in exploring new therapeutic approaches that target metabolic reprogramming of immune cells to enhance their tumoricidal potential and bypass therapy resistance. Our work may provide new targets for antitumor therapies.
    Keywords:  cancer cells; lipid metabolism; targeting therapy; tumor-associated macrophages
    DOI:  https://doi.org/10.1089/dna.2023.0071
  2. Biochim Biophys Acta Rev Cancer. 2023 Aug 02. pii: S0304-419X(23)00111-7. [Epub ahead of print] 188962
      Reprogramming of the tumor microenvironment (TME) is a hallmark of cancer. Metabolic reprogramming is a vital approach to sustaining the energy supply in the TME. This alteration exists in both cancer cells and TME cells, collectively establishing an immunotolerant niche to facilitate tumor progression. Limited resources lead to metabolic competition and hinder the biological functions of anti-tumoral immunity. Reprogramming of lipid metabolism and tumor progression is closely related to each other. Due to the complexity of fatty acid (FA) types and the lack of an effective approach for detection, the mechanisms and effects of FA metabolic reprogramming have been unclear. Herein, we review FA metabolism in the tumor milieu, summarize how FA metabolic reprogramming influences antitumor immune response, suggest the mechanisms by which FAs affect immunotherapy against cancer, and discuss the potential of FA metabolism-based drugs in cancer treatment.
    Keywords:  Fatty acid; Metabolic reprogramming; Metastasis; Statin; Tumorigenesis; cancer progression
    DOI:  https://doi.org/10.1016/j.bbcan.2023.188962
  3. Biomaterials. 2023 Jul 25. pii: S0142-9612(23)00261-2. [Epub ahead of print]301 122253
      The poor permeability of therapeutic drugs, limited T-cell infiltration, and strong immunosuppressive tumor microenvironment of triple-negative breast cancer (TNBC) acts as a prominent barrier to the delivery of drugs and immunotherapy including programmed cell death ligand-1 antibody (anti-PD-L1). Transforming growth factor (TGF)-β, an important cytokine produced by cancer-associated fibroblasts (CAFs) and tumor cells contributes to the pathological vasculature, dense tumor stroma and strong immunosuppressive tumor microenvironment (TME). Herein, a nanomedicine platform (HA-LSL/siTGF-β) employing dual-targeting, alongside hyaluronidase (HAase) and glutathione (GSH) triggered release was elaborately constructed to efficiently deliver TGF-β small interference RNA (siTGF-β). It was determined that this system was able to improve the efficacy of anti-PD-L1. The siTGF-β nanosystem efficiently silenced TGF-β-related signaling pathways in both activated NIH 3T3 cells and 4T1 cells in vitro and in vivo. This occurred firstly, through CD44-mediated uptake, followed by rapid escape mediated by HAase in endo/lysosomes and release of siRNA mediated by high GSH concentrations in the cytoplasm. By simultaneous silencing of TGF-β in stromal and tumor cells, HA-LSL/siTGF-β dramatically reduced stroma deposition, promoted the penetration of nanomedicines for deep remodeling of the TME, improved oxygenation, T cells infiltration and subsequent anti-PD-L1 deep penetration. The double suppression of TGF-β has been demonstrated to promote blood vessel normalization, inhibit an epithelial-to-mesenchymal transition (EMT), and further modify the immunosuppressive TME, which was supported by an overall increase in the proportion of dendritic cells and cytotoxic T cells. Further, a reduction in the proportion of immunosuppression cells such as regulatory T cells and myeloid-derived suppressor cells was also observed in the TME. Based on the comprehensive remodeling of the tumor microenvironment by this nanosystem, subsequent anti-PD-L1 therapy elicited robust antitumor immunity. Specifically, this system was able to suppress the growth of both primary and distant tumor while preventing tumor metastasis to the lung. Therefore, the combination of the dual-targeted siTGF-β nanosystem, alongside anti-PD-L1 may serve as a novel method to enhance antitumor immunotherapy against stroma-rich TNBC.
    Keywords:  Immune checkpoint inhibitors; Immuno suppressive tumor microenvironment; TGF-β; Triple-negative breast cancer; Vasculature and stroma remodeling
    DOI:  https://doi.org/10.1016/j.biomaterials.2023.122253
  4. Life Sci. 2023 Aug 01. pii: S0024-3205(23)00632-X. [Epub ahead of print] 121997
      Breast cancer (BC) is the main cause of cancer-related mortality among women globally. Despite substantial advances in the identification and management of primary tumors, traditional therapies including surgery, chemotherapy, and radiation cannot completely eliminate the danger of relapse and metastatic illness. Metastasis is controlled by microenvironmental and systemic mechanisms, including immunosurveillance. This led to the evolvement of immunotherapies that has gained much attention in the recent years for cancer treatment directed to the innate immune system. The long forgotten innate immune cells known as natural killer (NK) cells have emerged as novel targets for more effective therapeutics for BC. Normally, NK cells has the capacity to identify and eradicate tumor cells either directly or by releasing cytotoxic granules, chemokines and proinflammatory cytokines. Yet, NK cells are exposed to inhibitory signals by cancer cells, which causes them to become dysfunctional in the immunosuppressive tumor microenvironment (TME) in BC, supporting tumor escape and spread. Potential mechanisms of NK cell dysfunction in BC metastasis have been recently identified. Understanding these immunologic pathways driving BC metastasis will lead to improvements in the current immunotherapeutic strategies. In the current review, we highlight how BC evades immunosurveillance by rendering NK cells dysfunctional and we shed the light on novel NK cell- directed therapies.
    Keywords:  Epithelial mesenchymal transition; Immune-escape; Immunotherapy; Metastatic breast cancer; NK cells; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.lfs.2023.121997
  5. Front Immunol. 2023 ;14 1200941
      This review focuses on the immunosuppressive effects of tumor angiogenesis and coagulation on the tumor microenvironment (TME). We summarize previous research efforts leveraging these observations and targeting these processes to enhance immunotherapy outcomes. Clinical trials have documented improved outcomes when combining anti-angiogenic agents and immunotherapy. However, their overall survival benefit over conventional therapy remains limited and certain tumors exhibit poor response to anti-angiogenic therapy. Additionally, whilst preclinical studies have shown several components of the tumor coagulome to curb effective anti-tumor immune responses, the clinical studies reporting combinations of anticoagulants with immunotherapies have demonstrated variable treatment outcomes. By reviewing the current state of the literature on this topic, we address the key questions and future directions in the field, the answers of which are crucial for developing effective strategies to reprogram the TME in order to further the field of cancer immunotherapy.
    Keywords:  angiogenesis; hypoxia; immunotherapy; thrombosis; treatment resistance; tumor microenvironment; vascular normalization
    DOI:  https://doi.org/10.3389/fimmu.2023.1200941
  6. Adv Drug Deliv Rev. 2023 Jul 28. pii: S0169-409X(23)00342-3. [Epub ahead of print]200 115027
      The rising incidence and persistent thrombosis in multiple cancers including those that are immunosuppressive highlight the need for understanding the tumor coagulome system and its role beyond hemostatic complications. Immunotherapy has shown significant benefits in solid organ tumors but has been disappointing in the treatment of hypercoagulable cancers, such as glioblastoma and pancreatic ductal adenocarcinomas. Thus, targeting thrombosis to prevent immunosuppression seems a clinically viable approach in cancer treatment. Hypercoagulable tumors often develop fibrin clots within the tumor microenvironment (TME) that dictates the biophysical characteristics of the tumor tissue. The application of systems biology and single-cell approaches highlight the potential role of coagulome or thrombocytosis in shaping the tumor immune microenvironment (TIME). In-depth knowledge of the tumor coagulome would provide unprecedented opportunities to better predict the hemostatic complications, explore how thrombotic stroma modulates tumor immunity, reexamine the significance of clinical biomarkers, and enable steering the stromal versus systemic immune response for boosting the effectiveness of immune checkpoint inhibitors in cancer treatment. We focus on the role of coagulation factors in priming a suppressive TIME and the huge potential of existing anticoagulant drugs in the clinical settings of cancer immunotherapy.
    Keywords:  Cancer immunotherapy; Drug transport barrier; Immunosuppression; Tumor coagulome; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.addr.2023.115027
  7. Cell Commun Signal. 2023 Aug 04. 21(1): 197
      Macrophages are immune cells with high plasticity that are widely distributed in all tissues and organs of the body. Under the influence of the immune microenvironment of breast tumors, macrophages differentiate into various germline lineages. They exert pro-tumor or tumor-suppressive effects by secreting various cytokines. Pyroptosis is mediated by Gasdermin family proteins, which form holes in cell membranes and cause a violent inflammatory response and cell death. This is an important way for the body to fight off infections. Tumor cell pyroptosis can activate anti-tumor immunity and inhibit tumor growth. At the same time, it releases inflammatory mediators and recruits tumor-associated macrophages (TAMs) for accumulation. Macrophages act as "mediators" of cytokine interactions and indirectly influence the pyroptosis pathway. This paper describes the mechanism of action on the part of TAM in affecting the pyroptosis process of breast tumor cells, as well as its key role in the tumor microenvironment. Additionally, it provides the basis for in-depth research on how to use immune cells to affect breast tumors and guide anti-tumor trends, with important implications for the prevention and treatment of breast tumors. Video Abstract.
    Keywords:  Breast cancer; Cytokines; Pyroptosis; Tumor immune microenvironment; Tumor-associated macrophages
    DOI:  https://doi.org/10.1186/s12964-023-01208-y
  8. Int J Cancer. 2023 Aug 02.
      The γδT-cells recognize infected or transformed cells. However, unlike αβT-cells, γδT-cells are innate-like immune cells, with no major histocompatibility complex restriction requirements. γδT-cells are the main population of intestinal intraepithelial lymphocytes (IELs) and are associated with the antitumor immune response, particularly in colorectal cancer (CRC). Although CD8+ T-cells exhibit dysfunction and even exhaustion in the tumor microenvironment (TME), which contributes to tumor immune escape, whether the same applies to tumor-infiltrating (TI)-γδT-cells is not completely understood. Here, we sought to investigate the expression pattern of inhibitory receptors and functional state of TI-γδT-cells, and reveal the features of exhausted TI-γδT-cells in the CRC TME. We demonstrated that TI-γδT-cells exhibited exhaustion phenotypes and displayed more severe functional exhaustion than TI-CD8+ T-cells or NK-cells in the TME of CRC. In addition, scRNA-seq analysis of TI-γδT-cells revealed three exhausted subsets with remarkable heterogeneity. The presence of three heterogeneous exhausted γδT-cell (Tex) populations, including Texprog , Textran and Texterm were further confirmed by flow cytometry, on the basis of PD-1 and TIM-3 expression. Finally, we revealed that c-Maf not only contributed to γδT-cell exhaustion via upregulation of inhibitory receptors, but also involved in the exhaustion of CD8+ T and NK-cells. c-Maf may also be an important contributor to γδT-cell exhaustion in CRC patients. These findings indicated that TI-γδT-cells exhibit phenotypic and functional exhaustion in the CRC TME. The revealed features of exhausted TI-γδT-cells may provide help for understanding the mechanisms and the association of γδT-cell exhaustion with tumor development and pathogenesis.
    Keywords:  c-Maf; exhaustion; tumor microenvironment; heterogeneity; γδT cell
    DOI:  https://doi.org/10.1002/ijc.34669
  9. Clin Exp Med. 2023 Aug 03.
      Despite the success of chimeric antigen receptor (CAR) T cells in hematologic malignancies, adoptive cell therapy (ACT) has not been effective in treating solid tumors. Here, we developed an inflammatory macrophage-based ACT to effectively treat solid tumors. We engineered inflammatory macrophages to enhance their antitumor activities, including proinflammatory cytokine secretion and co-stimulatory molecule expression by co-activating toll-like receptor and stimulator of interferon genes signaling pathways. Engineered macrophages maintain an inflammatory phenotype after their adoptive transfer into the anti-inflammatory tumor microenvironment (TME), whereas conventional inflammatory macrophages prepared using interferon-γ treatment are repolarized to an anti-inflammatory phenotype. In a mouse melanoma model, intratumoral adoptive transfer of engineered macrophages showed robust tumor growth inhibition by increasing CD8+ T cells in the TME and tumor antigen-specific CD8+ T cells in the blood. This study demonstrated that engineered inflammatory macrophages have potential as an effective ACT for treating solid tumors.
    Keywords:  Cancer immunotherapy; Cell therapy; Inflammatory macrophages; Pattern-recognition receptor signaling pathways; Solid tumors
    DOI:  https://doi.org/10.1007/s10238-023-01157-3
  10. Front Immunol. 2023 ;14 1240415
      
    Keywords:  cancer; chronic inflammation; erythroid progenitor cells; extramedullary erythropoiesis; myeloid-derived suppressor cells
    DOI:  https://doi.org/10.3389/fimmu.2023.1240415
  11. Curr Cancer Drug Targets. 2023 Aug 03.
      OBJECTIVE: This review describes the comprehensive portrait of tumor microenvironment (TME). Additionally, we provided a panoramic perspective on the transformation and functions of the diverse constituents in TME, and the underlying mechanisms of drug resistance, beginning with the immune cells and metabolic dynamics within TME. Lastly, we summarized the most auspicious potential therapeutic strategies.RESULTS: TME is a unique realm crafted by malignant cells to withstand the onslaught of endogenous and exogenous therapies. Recent research has revealed many small-molecule immunotherapies exhibiting auspicious outcomes in preclinical investigations. Furthermore, some pro-immune mechanisms have emerged as a potential avenue. With the advent of nanosystems and precision targeting, targeted therapy has now transcended the "comfort zone" erected by cancer cells within TME.
    CONCLUSION: The ceaseless metamorphosis of TME fosters the intransigent resilience and proliferation of tumors. However, existing therapies have yet to surmount the formidable obstacles posed by TME. Therefore, scientists should investigate potential avenues for therapeutic intervention and design innovative pharmacological and clinical technologies.
    Keywords:  T-cells; Tumor microenvironment; cancer; immune system; immunotherapy.; macrophages; natural killer cells
    DOI:  https://doi.org/10.2174/1568009623666230712095021
  12. Cell Rep. 2023 Jul 28. pii: S2211-1247(23)00902-6. [Epub ahead of print]42(8): 112891
      Gliomas are one of the leading causes of cancer-related death in the adolescent and young adult (AYA) population. Two-thirds of AYA glioma patients are affected by low-grade gliomas (LGGs), but there are no specific treatments. Malignant progression is supported by the immunosuppressive stromal component of the tumor microenvironment (TME) exacerbated by M2 macrophages and a paucity of cytotoxic T cells. A single intravenous dose of engineered bone-marrow-derived myeloid cells that release interleukin-2 (GEMys-IL2) was used to treat mice with LGGs. Our results demonstrate that GEMys-IL2 crossed the blood-brain barrier, infiltrated the TME, and reprogrammed the immune cell composition and transcriptome. Moreover, GEMys-IL2 extended survival in an LGG immunocompetent mouse model. Here, we report the efficacy of an in vivo approach that demonstrates the potential for a cell-mediated innate immunotherapy designed to enhance the recruitment of activated effector T and natural killer cells within the glioma TME.
    Keywords:  CP: Cancer; CP: Immunology; GEMys; IL2; LGG; RCAS/t-va; TME; genetically engineered myeloid cells; immunotherapy; interleukin-2; myeloid cells; reprogramming TME
    DOI:  https://doi.org/10.1016/j.celrep.2023.112891
  13. Rom J Morphol Embryol. 2023 Apr-Jun;64(2):64(2): 251-261
      Gastric cancer (GC), despite the current possibilities of early diagnosis and curative treatment, remains a major public health problem, being one of the main causes of cancer, due to its detection in advanced stages. Screening programs applied in Western countries led to low incidence rates in these countries. Helicobacter pylori bacterial infection is considered to be the highest risk factor for the onset of GC because it causes chronic inflammation of the gastric mucosa and damages hydrochloric acid secretory glands, eventually leading to atrophic gastritis, which has a potential to progress to GC. In our study, we aimed at assessing the tumor microenvironment in gastric adenocarcinomas as approximately 90% of GCs are adenocarcinomas. Our study showed that the tumor microenvironment has an extremely complex morphological structure, totally different from the microscopic structure of the gastric wall, consisting of stromal cells, lymphocytes, plasma cells, macrophages, blood vessels, collagen fibers, extracellular connective matrix, other cells. The tumor microenvironment presents phenotypic, cellular and molecular heterogeneity; therefore, the microscopic aspect differs from one tumor to another and even from one region to another in the same tumor. Poorly or moderately differentiated adenocarcinomas show a more intense desmoplastic reaction than well-differentiated ones. Alpha-smooth muscle actin (α-SMA)-positive stromal cells (tumor-associated fibroblasts) and tumor macrophages were the most numerous cells of the tumor microenvironment. The tumor microenvironment is the result of cooperation between tumor cells, cancer-associated fibroblasts, immune system cells and blood vessels. It allows tumor cells to multiply, grow and metastasize.
    DOI:  https://doi.org/10.47162/RJME.64.2.16
  14. Cell Commun Signal. 2023 08 01. 21(1): 187
      Chimeric antigen receptors (CARs) are widely used by T cells (CAR-T cells), natural killer cells dendritic cells and macrophages, and they are of great importance in cellular immunotherapy. However, the use of CAR-related products faces several challenges, including the poor persistence of cells carrying CARs, cell dysfunction or exhaustion, relapse of disease, immune effector cell-associated neurotoxicity syndrome, cytokine release syndrome, low efficacy against solid tumors and immunosuppression by the tumor microenvironment. Another important cell therapy regimen involves mesenchymal stem cells (MSCs). Recent studies have shown that MSCs can improve the anticancer functions of CAR-related products. CAR-MSCs can overcome the flaws of cellular immunotherapy. Thus, MSCs can be used as a biological vehicle for CARs. In this review, we first discuss the characteristics and immunomodulatory functions of MSCs. Then, the role of MSCs as a source of exosomes, including the characteristics of MSC-derived exosomes and their immunomodulatory functions, is discussed. The role of MSCs in CAR-related products, CAR-related product-derived exosomes and the effect of MSCs on CAR-related products are reviewed. Finally, the use of MSCs as CAR vehicles is discussed. Video Abstract.
    Keywords:  CAR; CAR-DCs; CAR-Ms; CAR-NK cells; CAR-T cells; Exosome; Immunomodulation; Immunotherapy; Mesenchymal stem cell
    DOI:  https://doi.org/10.1186/s12964-023-01191-4
  15. J Biomed Sci. 2023 Jul 31. 30(1): 61
      Dysregulating cellular metabolism is one of the emerging cancer hallmarks. Mitochondria are essential organelles responsible for numerous physiologic processes, such as energy production, cellular metabolism, apoptosis, and calcium and redox homeostasis. Although the "Warburg effect," in which cancer cells prefer aerobic glycolysis even under normal oxygen circumstances, was proposed a century ago, how mitochondrial dysfunction contributes to cancer progression is still unclear. This review discusses recent progress in the alterations of mitochondrial DNA (mtDNA) and mitochondrial dynamics in cancer malignant progression. Moreover, we integrate the possible regulatory mechanism of mitochondrial dysfunction-mediated mitochondrial retrograde signaling pathways, including mitochondrion-derived molecules (reactive oxygen species, calcium, oncometabolites, and mtDNA) and mitochondrial stress response pathways (mitochondrial unfolded protein response and integrated stress response) in cancer progression and provide the possible therapeutic targets. Furthermore, we discuss recent findings on the role of mitochondria in the immune regulatory function of immune cells and reveal the impact of the tumor microenvironment and metabolism remodeling on cancer immunity. Targeting the mitochondria and metabolism might improve cancer immunotherapy. These findings suggest that targeting mitochondrial retrograde signaling in cancer malignancy and modulating metabolism and mitochondria in cancer immunity might be promising treatment strategies for cancer patients and provide precise and personalized medicine against cancer.
    Keywords:  Cancer immunity; Cancer progression; Mitochondria; Retrograde signaling
    DOI:  https://doi.org/10.1186/s12929-023-00956-w
  16. Neurosurg Focus. 2023 Aug;55(2): E17
      OBJECTIVE: The objective of this review was to describe the immunological changes that take place in the dura mater in response to metastatic disease that seeds the CNS. The authors hypothesized that the dura's anatomy and resident immune cell population play a role in enabling metastasis to the brain and leptomeninges.METHODS: An extensive literature search was conducted to identify evidence that supports the dura's participation in metastasis to the CNS. The authors' hypothesis was informed by a recent upsurge in studies that have investigated the dura's role in metastatic development, CNS infections, and autoimmunity. They reviewed this literature as well as the use of immunotherapy in treating brain metastases and how these therapies change the meningeal immune landscape to overcome and reverse tumor-promoting immunosuppression.
    RESULTS: Evidence suggests that the unique architecture and immune cell profile of the dura, compared with other immune compartments within the CNS, facilitate entry of metastatic tumor cells into the brain. Once these tumor cells penetrate the dural barrier, they propagate an immunosuppressive tumor microenvironment. Therefore, immunotherapy may serve to overcome this immunosuppressive environment and liberate proinflammatory immune cells in an effort to combat metastatic disease.
    CONCLUSIONS: Within the next few years, the authors expect the addition of several more scientific studies into the literature that further underscore the dura as a chief participant and neuroanatomical barrier in neuro-oncology.
    Keywords:  cancer; dura mater; glymphatic; immunotherapy; lymphatic; meningeal; metastases; neuroimmunology
    DOI:  https://doi.org/10.3171/2023.5.FOCUS23229
  17. Cancer Immunol Immunother. 2023 Aug 01.
      The human cutaneous metastatic melanoma is the deadliest skin cancer. Partial, or less frequently complete spontaneous regressions could be observed, mainly mediated by T cells. Nevertheless, the underlying mechanisms are not fully unraveled. We investigated the first events of the immune response related to cancer regression in Melanoma-bearing Libechov Minipigs (MeLiM), a unique swine model of cutaneous melanoma that regresses spontaneously. Using a multiparameter flow cytometry strategy and integrating new clinical and histological criteria of the regression, we show that T cells and B cells are present only in the late stages, arguing against their role in the initial destruction of malignant cells. NK cells infiltrate the tumors before T cells and therefore might be involved in the induction of the regression process. Myeloid cells represent the main immune population within the tumor microenvironment regardless of the regression stage. Among those, MHCII+ CD163- macrophages that differ phenotypically and functionally compared to other tumor-associated macrophages, increase in number together with the first signs of regression suggesting their crucial contribution to initiating the regression process. Our study supports the importance of macrophage reprogramming in humans to improve current immunotherapy for metastatic melanoma.
    Keywords:  Melanoma; Spontaneous tumor regression; Tumor immune microenvironment; Tumor-associated macrophages
    DOI:  https://doi.org/10.1007/s00262-023-03503-6
  18. Cancer Immunol Immunother. 2023 Aug 01.
      Reovirus, a naturally occurring oncolytic virus, initiates the lysis of tumor cells while simultaneously releasing tumor antigens or proapoptotic cytokines in the tumor microenvironment to augment anticancer immunity. However, reovirus has developed a strategy to evade antiviral immunity via its inhibitory effect on interferon production, which negatively affects the induction of antitumor immune responses. The mammalian adaptor protein Stimulator of Interferon Genes (STING) was identified as a key regulator that orchestrates immune responses by sensing cytosolic DNA derived from pathogens or tumors, resulting in the production of type I interferon. Recent studies reported the role of STING in innate immune responses to RNA viruses leading to the restriction of RNA virus replication. In the current study, we found that reovirus had a reciprocal reaction with a STING agonist regarding type I interferon responses in vitro; however, we found that the combination of reovirus and STING agonist enhanced anti-tumor immunity by enhancing cytotoxic T cell trafficking into tumors, leading to significant tumor regression and survival benefit in a syngeneic colorectal cancer model. Our data indicate the combination of reovirus and a STING agonist to enhance inflammation in the tumor microenvironment might be a strategy to improve oncolytic reovirus immunotherapy.
    Keywords:  Colorectal cancer; Reovirus; STING agonist
    DOI:  https://doi.org/10.1007/s00262-023-03509-0
  19. J Nanobiotechnology. 2023 Aug 04. 21(1): 253
      Inhibition of tumor growth and normalization of immune responses in the tumor microenvironment (TME) are critical issues for improving cancer therapy. However, in the treatment of glioma, effective nanomedicine has limited access to the brain because of the blood-brain barrier (BBB). Previously, we demonstrated nano-sized ginseng-derived exosome-like nanoparticles (GENs) consisting of phospholipids including various bioactive components, and evaluated anti-tumor immune responses in T cells and Tregs to inhibit tumor progression. It was found that the enhanced targeting ability of GENs to the BBB and glioma induced a significant therapeutic effect and exhibited strong efficacy in recruiting M1 macrophage expression in the TME. GENs were demonstrated to be successful candidates in glioma therapeutics both in vitro and in vivo, suggesting excellent potential for inhibiting glioma progression and regulating tumor-associated macrophages (TAMs).
    Keywords:  Anti-glioma; Ginseng; Ginseng-derived exosome-like nanoparticles; Plant-derived exosome-like nanoparticles; Tumor microenvironment
    DOI:  https://doi.org/10.1186/s12951-023-02006-x
  20. Georgian Med News. 2023 Jun; 105-112
      Immunotherapy causes cancer patients' immune systems to activate in search of and eliminate cancer cells. As a therapeutic area for cancer, it has expanded in importance and demonstrated promising results in treating many cancers. Checkpoint blockade (CPB) therapy may stimulate a suppressed immune response to provide long-lasting therapeutic results. However, the absence of a tumor-reactive immune infiltration is probably why response rates are still low. Using chimeric antigen receptor (CAR)-modified T cells to fight cancer may significantly impact immunology. This study explored using checkpoint inhibitors, car-T cells, and vaccines in immunotherapy to treat cancers. Drugs used for CPB aim to reduce immunological suppression, allowing for more effective CAR T cells and dendritic cell (DC) vaccines, providing some optimism that this may be increased, both of which have proven therapeutic efficacy in specific cancers. However, drug-induced side effects and the tumor microenvironment's propensity for immunosuppression mean treatment effectiveness is still inadequate. The outcomes of current preclinical tests suggest that novel therapies targeting lymphocyte-activation gene 3 (LAG3), T cell immunoglobulin and mucin-domain containing-3 (TIM3), cytotoxic T lymphocyte-associated protein 4 (CTLA-4), and programmed cell death protein 1 (PD-1) could be used as adjuvant therapies to modify the tumor microenvironment.
  21. Curr Opin Biotechnol. 2023 Jul 27. pii: S0958-1669(23)00086-1. [Epub ahead of print]83 102976
      2-hydroxyglutarate (2HG) is a biproduct of the Krebs cycle, which exists in a D- and L- enantiomer and is structurally similar to α-ketoglutarate. Both 2HG enantiomers have been described to accumulate in diverse cancer and immune cells and can influence cell fate and function. While D-2HG was originally considered as an 'oncometabolite' that aberrantly builds up in certain cancers, it is becoming clear that it also physiologically accumulates in immune cells and regulates immune function. Conversely, L-2HG is considered as an 'immunometabolite' due to its induction and regulatory function in T cells, but it can also be induced in certain cancers. Here, the authors review the effects of both 2HG enantiomers on immune cells within the tumor microenvironment.
    DOI:  https://doi.org/10.1016/j.copbio.2023.102976
  22. Adv Healthc Mater. 2023 Aug 04. e2300882
      The application of nanomaterials in healthcare has emerged as a promising strategy due to their unique structural diversity, surface properties, and compositional diversity. In particular, they have found a significant role in improving drug delivery and inhibiting the growth and metastasis of tumor cells. Moreover, recent studies have highlighted their potential in modulating the tumor microenvironment (TME) and enhancing the activity of immune cells to improve tumor therapy efficacy. Various types of nanomaterials are currently utilized as drug carriers, immunosuppressants, immune activators, immunoassay reagents, and more for tumor immunotherapy. Necessarily, nanomaterials used for tumor immunotherapy can be grouped into two categories: organic and inorganic nanomaterials. Though both have shown the ability to achieve the purpose of tumor immunotherapy, their composition and structural properties result in differences in their mechanisms and modes of action. Organic nanomaterials can be further divided into organic polymers, cell membranes, nanoemulsion-modified, and hydrogel forms. At the same time, inorganic nanomaterials can be broadly classified as nonmetallic and metallic nanomaterials. The current review aims to explore the mechanisms of action of these different types of nanomaterials and their prospects for promoting tumor immunotherapy. This article is protected by copyright. All rights reserved.
    Keywords:  anti-tumor; immunotherapy; inorganic; nanomaterials; organic
    DOI:  https://doi.org/10.1002/adhm.202300882
  23. Cell Death Dis. 2023 Aug 02. 14(8): 492
      Metabolic heterogeneity of tumor microenvironment (TME) is a hallmark of cancer and a big barrier to cancer treatment. Cancer cells display diverse capacities to utilize alternative carbon sources, including nucleotides, under poor nutrient circumstances. However, whether and how purine, especially inosine, regulates mitochondrial metabolism to buffer nutrient starvation has not been well-defined yet. Here, we identify the induction of 5'-nucleotidase, cytosolic II (NT5C2) gene expression promotes inosine accumulation and maintains cancer cell survival in the nutrient-poor region. Inosine elevation further induces Rag GTPases abundance and mTORC1 signaling pathway by enhancing transcription factor SP1 level in the starved tumor. Besides, inosine supplementary stimulates the synthesis of nascent TCA cycle enzymes, including citrate synthesis (CS) and aconitase 1 (ACO1), to further enhance oxidative phosphorylation of breast cancer cells under glucose starvation, leading to the accumulation of iso-citric acid. Inhibition of the CS activity or knockdown of ACO1 blocks the rescue effect of inosine on cancer survival under starvation. Collectively, our finding highlights the vital signal role of inosine linking mitochondrial respiration and buffering starvation, beyond serving as direct energy carriers or building blocks for genetic code in TME, shedding light on future cancer treatment by targeting inosine metabolism.
    DOI:  https://doi.org/10.1038/s41419-023-06017-2
  24. Trends Mol Med. 2023 Jul 27. pii: S1471-4914(23)00153-3. [Epub ahead of print]
      Cancer quiescence reflects the ability of cancer cells to enter a reversible slow-cycling or mitotically dormant state and represents a powerful self-protecting mechanism preventing cancer cell 'damage' from hypoxic conditions, nutrient deprivation, immune surveillance, and (chemo)therapy. When stress conditions are restrained, and tumor microenvironment becomes beneficial, quiescent cancer cells re-enter cell cycle to facilitate tumor spread and cancer progression/metastasis. Recent studies have highlighted the dynamic role of regulatory non-coding RNAs (ncRNAs) in orchestrating cancer quiescence. The elucidation of regulatory ncRNA networks will shed light on the quiescence-proliferation equilibrium and, ultimately, pave the way for new treatment options. Herein, we have summarized the ever-growing role of ncRNAs upon cancer quiescence regulation and their impact on treatment resistance and modern cancer therapeutics.
    Keywords:  cancer dormancy; cancer quiescence; chemoresistance; long non-coding RNAs; miRNAs; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.molmed.2023.07.003
  25. Heliyon. 2023 Aug;9(8): e18132
      Background: N6-methyladenosine (m6A) RNA methylation plays a crucial role in important genomic processes in a variety of malignancies. However, the characterization of m6A with infiltrating immune cells in the tumor microenvironment (TME) in esophageal squamous carcinoma (ESCC) remains unknown.Methods: The single-cell transcriptome data from five ESCC patients in our hospital were analyzed, and TME clusters associated with prognosis and immune checkpoint genes were investigated. Cell isolation and qPCR were conducted to validate the gene characterization in different cells.
    Results: According to distinct biological processes and marker genes, macrophages, T cells, and B cells clustered into three to four different subgroups. In addition, we demonstrated that m6A RNA methylation regulators were strongly related to the clinical and biological features of ESCC. Analysis of transcriptome data revealed that m6A-mediated TME cell subsets had high predictive value and showed a close relationship with immune checkpoint genes. The validation results from qPCR demonstrated the characteristics of essential genes. CellChat analysis revealed that RNA from TME cells m6A methylation-associated cell subtypes had substantial and diversified interactions with cancer cells. Further investigation revealed that MIF- (CD74+CXCR4) and MIF- (CD74+CD44) ligand-receptor pairings facilitated communication between m6A-associated subtypes of TME cells and cancer cells.
    Conclusion: Overall, our study demonstrated for the first time the function of m6A methylation-mediated intercellular communication in the microenvironment of tumors in controlling tumor development and anti-tumor immune regulation in ESCC.
    Keywords:  Cell communication; Esophageal squamous carcinoma; N6-methyladenosine; Single-cell; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.heliyon.2023.e18132
  26. Phytomedicine. 2023 Jul 22. pii: S0944-7113(23)00329-X. [Epub ahead of print]119 154968
      BACKGROUND: Immune checkpoint blockade (ICB) induces durable immune responses across a spectrum of advanced cancers and revolutionizes the oncology field. However, only a subset of patients achieves long-lasting clinical benefits. Tumor-associated macrophages (TAMs) usually secrete immunosuppressive cytokines and contribute to the failure of ICB therapy. Therefore, it is crucial to mechanically manipulate the abundance and function of TAMs in the tumor microenvironment (TME), which can offer a promising molecular basis to improve the clinical response efficacy of ICB in cancer patients.PURPOSE: This study aims to investigate TAMs in the immunosuppressive microenvironment to identify new therapeutic targets, improve the ability to predict and guide responses to clinical immunotherapy, and develop new strategies for immunotherapy of lung tumors.
    METHODS: Lewis lung carcinoma (LLC) xenograft-bearing mouse models were established to analyze the antitumor activity of Rhizoma Coptidis (RC) in vivo. A systems pharmacology strategy was used to predict the correlation between RC and M2 macrophages. The effect of RC on the abundance of M2 macrophages was analyzed by flow cytometry of murine samples. Western blot was performed to analyze the expression of Leukotriene A4 hydrolase (LTA4H) and LTB4 receptor 1 (BLT1) in harvested lung cancer tissues. The impact of blocking leukotriene B4 (LTB4) signaling by RC on the recruitment of M2 macrophages was assessed in vitro and in vivo. Transwell migration assays were conducted to clarify the inhibition of macrophage migration by blocking LTB4. Lta4h-/- mice were used to investigate the sensitivity of immunotherapy to lung cancer by blocking the LTB4 signaling.
    RESULTS: Here, we report that RC, an herbal medicine from the family Ranunculaceae, suppresses the recruitment and immunosuppressive function of TAMs, which in turn sensitizes lung cancer to ICB therapy. Firstly, a systems pharmacology strategy was proposed to identify combinatorial drugs for ICB therapy with a systems biology perspective of drug-target-pathway-TME phenotype. We predicted and verified that RC significantly inhibits tumor growth and the infiltration of M2-TAMs into TME of LLC tumor-bearing mice. Then, RC inhibits the recruitment of macrophages to the tumor TME via blocking LTB4 signaling, and suppresses the expression of immunosuppressive factors (IL-10, TGF-β and VEGF). As a result, RC enables CD8+ T cells to retain their proliferative and infiltrative abilities within the TME. Ultimately, these events promote cytotoxic T-cell-mediated clearance of tumor cells, which is further enhanced by the addition of anti-PD-L1 therapy. Furthermore, we employed LTA4H deficient mice (Lta4h-/- mice) to evaluate the antitumor efficiency, the results showed that the efficacy of immunotherapy was enhanced due to the synergistic effect of LTB4 signaling blockage and ICB inhibition, leading to remarkable inhibition of tumor growth in a mouse model of lung adenocarcinoma.
    CONCLUSIONS: Taken together, these findings suggest that RC enhances antitumor immunity, providing a rationale for combining RC with immunotherapies as a potential anti-cancer treatment strategy.
    Keywords:  Immune checkpoint blockade; Non-small cell lung cancer; Rhizoma coptidis; Systems pharmacology; Tumor-associated macrophages
    DOI:  https://doi.org/10.1016/j.phymed.2023.154968
  27. Front Immunol. 2023 ;14 1203230
      Chimeric antigen receptor (CAR) T cell therapy for solid tumors shows promise, but several hurdles remain. Strategies to overcome barriers such as CAR T therapy-related toxicities (CTT), immunosuppression, and immune checkpoints through research and technology are needed to put the last nail to the coffin and offer hope for previously incurable malignancies. Herein we review current literature and infer novel strategies for the mitigation of CTT while impeding immune suppression, stromal barriers, tumor heterogeneity, on-target/off-tumor toxicities, and better transfection strategies with an emphasis on clinical research and prospects.
    Keywords:  CAR T; immune checkpoints; immunosuppression; stromal barrier; transfection strategies
    DOI:  https://doi.org/10.3389/fimmu.2023.1203230
  28. Biochem Pharmacol. 2023 Jul 29. pii: S0006-2952(23)00315-5. [Epub ahead of print] 115724
      Anti-programmed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) antibodies have developed rapidly but exhibited modest activity in ovarian cancer (OC), achieving a clinical response rate ranging from 5.9% to 19%. Current evidence indicate that the establishment of an integrated cancer-immunity cycle is a prerequisite for anti-PD-1/PD-L1 antibodies. Any impairment in this cycle, including lack of cancer antigens release, impaired antigen-presenting, decreased T cell priming and activation, less T cells that are trafficked or infiltrated in tumor microenvironment (TME), and low tumor recognition and killings, will lead to decreased infiltrated cytotoxic T cells to tumor bed and treatment failure. Therefore, combinatorial strategies aiming to modify cancer-immunity cycle and reprogram tumor immune microenvironment are of great interest. By far, various strategies have been studied to enhance responsiveness to PD-1/PD-L1 inhibitors in OC. Platinum-based chemotherapy increases neoantigens release; poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) improve the function of antigen-presenting cells and promote the trafficking of T cells into tumors; epigenetic drugs help to complete the immune cycle by affecting multiple steps; immunotherapies like anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) antibodies reactivate T cells, and other treatment strategies like radiotherapy helps to increase the expression of tumor antigens. In this review, we will summarize the preclinical studies by analyzing their contribution in modifying the cancer immunity cycle and remodeling tumor environment, and we will also summarize recent progress in clinical trials and discuss some perspectives to improve these treatment strategies.
    Keywords:  Cancer-immunity cycle; Combination strategies; Immune response; Ovarian cancer; PD-1; PD-L1
    DOI:  https://doi.org/10.1016/j.bcp.2023.115724